每日算法打卡:子矩阵的和 day 8

文章目录

    • 原题链接
    • 题目描述
        • 输入格式
        • 输出格式
        • 数据范围
        • 输入样例:
        • 输出样例:
    • 题目分析
    • 示例代码

原题链接

796. 子矩阵的和

题目难度:简单

题目描述

输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x 1 , y 1 , x 2 , y 2 x_1, y_1, x_2, y_2 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式

第一行包含三个整数 n,m,q。

接下来 n 行,每行包含 m 个整数,表示整数矩阵。

接下来 q 行,每行包含四个整数 x 1 , y 1 , x 2 , y 2 x_1, y_1, x_2, y_2 x1,y1,x2,y2,表示一组询问。

输出格式

共 q 行,每行输出一个询问的结果。

数据范围

1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000

输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4 
输出样例:
17
27
21 

题目分析

对于一维的前缀和,就是求某一段的前缀和,这道题是二维数组中的前缀和,是求任意区域的数字之和

如果每一次询问都是暴力算的话,复杂度其实是极高的,因此同样的,我们还是需要用前缀和的做法

对于这个前缀和矩阵,其中的每一个数,就代表了包括这个数和他左上角的所有数的和

第一个问题就是如何计算这个前缀和矩阵,我们的公式是什么,这里我们就可以运用一下数学中容斥原理的思想,或者可以理解为图形面积的加减

例如

每日算法打卡:子矩阵的和 day 8_第1张图片

我们是想要计算(2,3)的数字,实际上就需要用(1,3)的数字加上(2,2)的数字,也就是黄色(包括绿色)加上蓝色(包括绿色),但是这样我们就把绿色加了两遍,因此需要减去一个绿色的(1,2),这样我们就算除了原本(2,3)对应的数字剩下数字的和,最后只需要加上(2,3)原本的数字即可

用公式表示就是

S x , y = S x − 1 , y + S x , y − 1 − S x − 1 , y − 1 + a x , y S_{x,y}=S_{x-1,y}+S_{x,y-1}-S_{x-1,y-1}+a_{x,y} Sx,y=Sx1,y+Sx,y1Sx1,y1+ax,y

利用这个公式就可以计算出前缀和数组了

第二个问题就是,假设我们已经有了前缀和数组,我们如何快速算出子矩阵的和是多少,这里的数学原理是与之前一样的

每日算法打卡:子矩阵的和 day 8_第2张图片

我们想要计算蓝色部分的子矩阵和,其实只需要用对应的前缀和矩阵的(3,3)(包括黄色绿色橙色),减去(1,3)(包括橙色绿色),减去(3,1)(包括黄色绿色),这里绿色被减去了两次,因此我们需要再加回来一次,加上(1,1)(绿色)即可

我们使用 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)表示子矩阵左上角的坐标,用 ( x 2 , y 2 ) (x_2,_y2) (x2,y2)表示右下角的坐标,最终结果用公式表示就是

a n s = S x 2 , y 2 − S x 2 , y 1 − 1 − S x 1 − 1 , y 2 + S x 1 − 1 , y 1 − 1 ans = S_{x_2,y_2}-S_{x_2,y_1-1}-S_{x_1-1,y_2}+S_{x_1-1,y_1-1} ans=Sx2,y2Sx2,y11Sx11,y2+Sx11,y11

这就是二维前缀和的思想

示例代码

#include
using namespace std;

const int N = 1010; // 数据范围

int n, m, q;
int arr[N][N], pre[N][N];

int main()
{
    cin >> n >> m >> q;
    for (int i = 1; i <= n; i++) // 数据输入
    {
        for (int j = 1; j <= m; j++)
        {
            cin >> arr[i][j];
            pre[i][j] = pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1] + arr[i][j]; // 计算前缀和矩阵
        }
    }
    while (q--)
    {
        int x1, y1, x2, y2;
        cin >> x1 >> y1 >> x2 >> y2;
        cout << pre[x2][y2] - pre[x1 - 1][y2] - pre[x2][y1 - 1] + pre[x1 - 1][y1 - 1] << '\n'; // 计算子矩阵的和
    }
    return 0;
}

你可能感兴趣的:(算法进阶,算法,矩阵,线性代数,前缀和)