第1关 统计每个城市的宾馆平均价格
package com.processdata;
import java.io.IOException;
import java.util.Scanner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import com.util.HBaseUtil;
/**
* 使用MapReduce程序处理HBase中的数据并将最终结果存入到另一张表 1中
*/
public class HBaseMapReduce extends Configured implements Tool {
public static class MyMapper extends TableMapper {
public static final byte[] column = "price".getBytes();
public static final byte[] family = "hotel_info".getBytes();
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context)
throws IOException, InterruptedException {
/********** Begin *********/
//获取酒店价格
String cityId = Bytes.toString(result.getValue("cityIdInfo".getBytes(),"cityId".getBytes()));
byte[] value = result.getValue(family,column);
//将价格转换为double
Double hotel = Double.parseDouble(Bytes.toString(value));
//将价格转化成()类型
DoubleWritable i = new DoubleWritable(hotel);
String key = cityId;
//写出城市(id,酒店价格)
context.write(new Text(key),i);
// String cityId = Bytes.toString(result.getValue("cityInfo".getBytes(), "cityId".getBytes()));
// byte[] value = result.getValue(family, column);
// //获取酒店价格
// //String cityId1 = Bytes.toString(result.getValue("hotel_info".getBytes(), "price".getBytes()));
// //将价格转换为double
// Double ho =Double.parseDouble(Bytes.toString(value));
// //将价格转换成()类型
// DoubleWritable i = new DoubleWritable(ho);
// String key = cityId;
// //写出(城市id,酒店价格)
// context.write(new Text(key),i);
/********** End *********/
}
}
public static class MyTableReducer extends TableReducer {
@Override
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
/********** Begin *********/
double sum = 0;
int count = 0;
for (DoubleWritable num:values){
count++;
sum += num.get();
}
double avePrice = sum / count;
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn("average_infos".getBytes(),"price".getBytes(),Bytes.toBytes(String.valueOf(avePrice)));
context.write(null,put);//initTableReducerJob 设置了表名所以在这里无需设置了
// double sum=0;
// int count=0;
// for(DoubleWritable value:values){
// count++;
// sum+=value.get();
// }
// double avePrice=sum/count;
// //创建pit对象
// Put put =new Put(Bytes.toBytes(key.toString()));
// put.addColumn("average_infos".getBytes(),"price".getBytes(),Bytes.toBytes(String.valueOf(avePrice)));
// context.write(null,put);
/********** End *********/
}
}
public int run(String[] args) throws Exception {
//配置Job
Configuration conf = HBaseConfiguration.create(getConf());
conf.set("hbase.zookeeper.quorum", "127.0.0.1"); //hbase 服务地址
conf.set("hbase.zookeeper.property.clientPort", "2181"); //端口号
Scanner sc = new Scanner(System.in);
String arg1 = sc.next();
String arg2 = sc.next();
//String arg1 = "t_city_hotels_info";
//String arg2 = "average_table";
try {
HBaseUtil.createTable("average_table", new String[] {"average_infos"});
} catch (Exception e) {
// 创建表失败
e.printStackTrace();
}
Job job = configureJob(conf,new String[]{arg1,arg2});
return job.waitForCompletion(true) ? 0 : 1;
}
private Job configureJob(Configuration conf, String[] args) throws IOException {
String tablename = args[0];
String targetTable = args[1];
Job job = new Job(conf,tablename);
Scan scan = new Scan();
scan.setCaching(300);
scan.setCacheBlocks(false);//在mapreduce程序中千万不要设置允许缓存
//初始化Mapreduce程序
TableMapReduceUtil.initTableMapperJob(tablename,scan,MyMapper.class, Text.class, DoubleWritable.class,job);
//初始化Reduce
TableMapReduceUtil.initTableReducerJob(
targetTable, // output table
MyTableReducer.class, // reducer class
job);
job.setNumReduceTasks(1);
return job;
}
}
第2关 统计酒店评论中词频较高的词
package com.processdata;
import java.io.IOException;
import java.util.List;
import java.util.Scanner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apdplat.word.WordSegmenter;
import org.apdplat.word.segmentation.Word;
import com.util.HBaseUtil;
import com.vdurmont.emoji.EmojiParser;
/**
* 词频统计
*
*/
public class WorldCountMapReduce extends Configured implements Tool {
public static class MyMapper extends TableMapper {
private static byte[] family = "comment_info".getBytes();
private static byte[] column = "content".getBytes();
@Override
protected void map(ImmutableBytesWritable rowKey, Result result, Context context)
throws IOException, InterruptedException {
/********** Begin *********/
// String content = Bytes.toString(result.getValue("comment_info".getBytes(),"content".getBytes()));
// byte[] content = result.getValue(family,column);
// if(content != null && content.isEmpty()){
// content=EmojiParser.removeAllEmojis(content);
// List words = WordSegmenter.seg(content);
// IntWritable intWritable = new IntWritable(1);
// for (Word word : words) {
// Text text = new Text(word.getText());
// //5、写入到context
// context.write(text,intWritable);
// }
// }
byte[] value = result.getValue(family, column);
String word = new String(value,"utf-8");
if(!word.isEmpty()){
String filter = EmojiParser.removeAllEmojis(word);
List segs = WordSegmenter.seg(filter);
for(Word cont : segs) {
Text text = new Text(cont.getText());
IntWritable v = new IntWritable(1);
context.write(text,v);
}
}
/********** End *********/
}
}
public static class MyReducer extends TableReducer {
private static byte[] family = "word_info".getBytes();
private static byte[] column = "count".getBytes();
@Override
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
/********** Begin *********/
//1.统计每一个分词的次数
// int count = 0;
// for (IntWritable value:values){
// count +=value.get();
// }
// //2.构建一个v3 是put RowKey: 分词
// Put put = new Put(Bytes.toBytes(key.toString()));
// //添加列
// put.addColumn(family,column,Bytes.toBytes(coumt));
// //3.把k3,v3 写入到context
// context.write(null,put);
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(family,column,Bytes.toBytes(sum));
context.write(null,put);
/********** End *********/
}
}
public int run(String[] args) throws Exception {
//配置Job
Configuration conf = HBaseConfiguration.create(getConf());
conf.set("hbase.zookeeper.quorum", "127.0.0.1"); //hbase 服务地址
conf.set("hbase.zookeeper.property.clientPort", "2181"); //端口号
Scanner sc = new Scanner(System.in);
String arg1 = sc.next();
String arg2 = sc.next();
try {
HBaseUtil.createTable("comment_word_count", new String[] {"word_info"});
} catch (Exception e) {
// 创建表失败
e.printStackTrace();
}
Job job = configureJob(conf,new String[]{arg1,arg2});
return job.waitForCompletion(true) ? 0 : 1;
}
private Job configureJob(Configuration conf, String[] args) throws IOException {
String tablename = args[0];
String targetTable = args[1];
Job job = new Job(conf,tablename);
Scan scan = new Scan();
scan.setCaching(300);
scan.setCacheBlocks(false);//在mapreduce程序中千万不要设置允许缓存
//初始化Mapper Reduce程序
TableMapReduceUtil.initTableMapperJob(tablename,scan,MyMapper.class, Text.class, IntWritable.class,job);
TableMapReduceUtil.initTableReducerJob(targetTable,MyReducer.class,job);
job.setNumReduceTasks(1);
return job;
}
}