- ThinkSound V2版 - 一键给无声视频配音,为AI视频生成匹配音效 支持50系显卡 一键整合包下载
昨日之日2006
ai语音音视频人工智能
ThinkSound是阿里通义实验室开源的首个音频生成模型,它能够让AI像专业“音效师”一样,根据视频内容生成高度逼真、与视觉内容完美契合的音频。ThinkSound可直接应用于影视后期制作,为AI生成的视频自动匹配精准的环境噪音与爆炸声效;服务于游戏开发领域,实时生成雨势变化等动态场景的自适应音效;同时可以无障碍视频生产,为视障用户同步生成画面描述与环境音效。今天分享的ThinkSoundV2版
- GoView 强势入驻 GitCode:拖拽低代码,打造高颜值数据大屏
GitCode 代码君
gitcode低代码开源
信息可视化时代,数字大屏日益成为展示核心KPI、运营状态、监控预警的主流形式。然而,用传统方式开发一个定制化数字大屏需要解决多少问题?1.繁复的数据源集成,各种不同的协议和格式……2.让人晕头转向的可视化逻辑,调动艰难的样式、布局、动画,和往往难以统一的风格3.牵一发而动全身的代码结构,就想换个主题色结果开启的全局CSS大冒险……现在,一个开源项目即可搞定上述问题——拖拽式低代码数字可视化平台Go
- 让电机转起来--基于STM32F1控制两相步进电机转动-新手小白入(完整代码)
梦想是成为甜妹儿
stm32嵌入式硬件单片机
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、基础内容1、步进电机2、电机驱动器3、接线方法二、最简单控制电机转动程序1.定时器的输出比较功能生成PWM波2.电机方向控制3.主函数三、进阶版电机控制程序1.加入按键控制2.motor.c中添加一个函数3.主函数总结前言本帖分享步进电机与驱动器的接线方式、速度计算与代码分析。第一次接触电机的小白可能会面对无数的代码分
- 12 个强大的 DeepSeek AI 提示将彻底改变您的日常生活
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
内容写作的最佳提示让我们从写作开始吧。无论您是博主、学生还是社交媒体创作者,这些提示都将帮助您创作出精彩的内容。提示1:“扮演专业文案撰稿人,为[产品/服务]撰写引人注目的广告文案。文案应引人入胜、具有说服力,且字数不得超过100个字。”这使得ChatGPT的响应结构就像真实的广告文案一样。提示2:“以更具吸引力和说服力的方式重写此段落,同时保持含义不变:[插入文本]。”推荐文章《Neo4j上使用
- PythonDay01
这里写目录标题一、注释1、单行注释2、多行注释二、定义变量1、要求2、代码三、关键字四、print函数五、基本数据类型1、整型2、字符串类型3、小数类型4、布尔类型5、空类型六、类型之间的相互转换1、从字符串转成int类型2、字符串转换成浮点型3、float转换成int4、丢失精度时不会去做四舍五入5、布尔类型七、字符串的常见操作1、split切分2、strip去除字符串两边的隐藏字符3、字符串的
- 2025年UDP洪水攻击防护实战全解析:从T级流量清洗到AI智能防御
上海云盾商务经理杨杨
udp人工智能网络协议
一、2025年UDP洪水攻击的新特征AI驱动的自适应攻击攻击者利用生成式AI动态调整UDP报文特征(如载荷内容、发送频率),攻击流量与正常业务流量差异率低至0.5%,传统指纹过滤规则失效。反射放大攻击升级黑客通过劫持物联网设备(如摄像头、传感器)构建僵尸网络,利用DNS/NTP协议漏洞发起反射攻击,1Gbps请求可放大至50-500倍流量,峰值突破8Tbps。混合协议打击70%的UDP攻击伴随TC
- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 低版本hive(1.2.1)UDF实现清除历史分区数据
༺水墨石༻
hivehiveUDFhivehadoop数据仓库
目标:通过UDF实现对表历史数据清除入参:表名、保留天数N一、pom文件4.0.0com.examplehive-udf-example1.0-SNAPSHOTjarhive-udf-exampleHiveUDFfordeletingpartitionsbydateUTF-81.81.8org.apache.hivehive-exec1.2.1org.apache.hivehive-metasto
- AI产品经理需要了解的算法知识
AI劳模
人工智能产品经理AI产品经理AI产品经理入门零基础入门产品经理算法语言模型
1、自然语言生成(NLG)自然语言生成(NaturalLanguageGeneration,简称NLG)是一种人工智能技术,它的目标是将计算机的数据、逻辑或算法产生的信息转换成人类可读的自然语言文本。换句话说,NLG能让机器“学会”写文章、报告、故事或者其他任何形式的文字,就像人类作家那样。这项技术使得机器能够理解复杂的数据并将其转化为易于理解的语言,以适应不同的受众和情境。应用实例:金融报告自动
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- Octo:伯克利开源机器人开发框架
【摘要】在各种机器人数据集上预先训练的大型策略有可能改变机器人学习:这种通用机器人策略无需从头开始训练新策略,只需使用少量领域内数据即可进行微调,但具有广泛的泛化能力。然而,为了广泛应用于各种机器人学习场景、环境和任务,这些策略需要处理不同的传感器和动作空间,适应各种常用的机器人平台,并轻松高效地微调到新领域。在这项工作中,我们旨在为开发开源、广泛适用的通用机器人操作策略奠定基础。作为第一步,我们
- 初阶数据结构之栈的实现
CodePracticer
数据结构数据结构开发语言笔记
前言:实现栈之前,先来了解一下什么是栈。1.栈的概念栈是一种特殊的线性表,只允许在固定一端插入和删除操作,进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守先进后出,后进先出LIFO(LastInFirstOut)的原则。压栈:栈的插入操作叫做进栈(压栈,入栈),入数据在栈顶。出栈:栈的删除操作叫做出栈,出数据也在栈顶。2.栈的底层结构如何选择现在我们已经了解了栈的结构特性了
- 抽象类与接口:Java面向对象设计的两大支柱
一、学习抽象类与接口的必要性在Java面向对象设计中,抽象类和接口是构建可扩展、可维护系统的基石:抽象类:实现代码复用与框架设计的核心工具接口:定义系统契约与实现多继承特性的关键机制模板方法模式:通过抽象类实现算法框架的经典设计模式掌握这些概念能帮助开发者:设计灵活可扩展的系统架构实现代码复用与多态的优雅结合适应Java版本演进带来的新特性二、抽象类详解2.1抽象类核心特性publicabstra
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 基于Vue3 + Element Plus项目实现el-table表格操作列自适应宽度组件
前言在实际的后台管理系统开发中,表格是最常用的数据展示组件之一。而表格的操作列(通常包含编辑、删除、查看等按钮)往往需要根据业务需求动态显示不同的按钮,这就带来了一个问题:如何让操作列的宽度能够自适应按钮的数量和内容长度?传统的解决方案是手动设置固定宽度,但这种方式存在以下问题:宽度设置过小,按钮可能会被挤压或换行宽度设置过大,会浪费表格空间按钮数量动态变化时,固定宽度无法适应本文将介绍如何基于V
- 构建高效的jQuery地理选择器组件
Kiki-2189
本文还有配套的精品资源,点击获取简介:本项目展示了如何利用jQuery构建一个在网页中常用的二级和三级城市选择器。这种选择器对于地理位置选择场景尤为重要,例如在线购物和预订服务。组件通过动态DOM操作、JSON数据结构、事件绑定、异步数据加载、插件化、样式美化、响应式设计、性能优化和无障碍访问等技术点,提供了一个高效、易用和适应性强的用户体验。同时,还需注意代码的兼容性、错误处理和全面的测试。1.
- Manus AI与多语言手写识别
ManusAI与多语言手写识别背景与概述手写识别技术的发展现状与挑战ManusAI的核心技术与应用场景多语言手写识别的市场需求与难点ManusAI的技术架构深度学习在手写识别中的应用多语言支持的模型设计数据预处理与特征提取方法多语言手写识别的关键挑战不同语言字符的多样性处理上下文语义与书写风格适应性低资源语言的训练数据获取解决方案与优化策略迁移学习在多语言任务中的应用端到端模型的优化与轻量化用户反
- 算法题 合并 K 个升序链表
LeetCode23.合并K个升序链表问题描述给定一个包含k个升序链表的数组,将这些链表合并为一个新的升序链表并返回。示例:输入:lists=[[1,4,5],[1,3,4],[2,6]]输出:[1,1,2,3,4,4,5,6]算法思路方法一:最小堆(优先队列)核心思想:使用最小堆维护当前所有链表头节点每次取出最小节点加入结果链表将该节点的下一个节点加入堆中步骤:初始化:将所有非空链表头节点入堆循
- 堡垒机操作行为异常检测的机器学习算法应用
一、传统检测模式的困境与机器学习的破局价值在数字化转型浪潮中,堡垒机作为运维安全的核心防线,面临着操作行为复杂度激增与检测能力滞后的双重挑战。传统检测手段主要依赖静态规则库与统计模型,存在三大致命缺陷:规则固化与误报泛滥:某金融机构曾因规则库未及时更新,导致运维人员正常批量操作被误判为“暴力破解”,单日误报量超2000次,消耗安全团队60%的精力。动态行为适应性弱:微服务架构下,运维人员访问路径呈
- 最全 自动驾驶数据集 (11/4号已更新)
数据猎手小k
自动驾驶人工智能机器学习
自动驾驶是一个快速发展的行业,它融合了人工智能、机器学习、传感器技术、高精度地图和先进的计算平台等多种技术。技术方面,自动驾驶汽车依赖于先进的传感器、如激光雷达、摄像头、毫米波雷达等,以及强大的计算平台来处理大量数据,自动驾驶数据集是训练和验证自动驾驶系统的关键资源,它提供了丰富的场景和条件,使算法能够学习和适应复杂的真实世界驾驶环境。一、研究背景自动驾驶技术的发展需要大量的数据来训练和优化算法,
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- 全身动作捕捉系统在人形机器人训练中提供精准数据的重要性
人形机器人作为复杂的移动操作平台,其运动精度直接影响任务执行可靠性。与工业机械臂相比,人形机器人需同时处理浮动基座动力学、多体耦合误差及非结构化环境适应,使得运动学误差分析更具挑战性。传统编程式动作控制已无法满足复杂场景需求,而全身动作捕捉系统通过提供高精度运动数据,成为突破这一瓶颈的关键技术。一、技术原理:从传感器到数字孪生的精准映射1.1动作捕捉系统的技术架构全身动作捕捉系统通常由惯性传感器、
- sorted函数python_sorted函数
sorted函数是python内置的,用来对可迭代对象排序的函数。此函数不会修改入参,返回一个已经排好序的list。list对象的成员函数sort会直接修改对象的内容,如果不想修改,就可以使用内置的sorted函数来创建一个排好序的新对象:>>>b['a462d','abc','34dfwe','54fg','1zp']>>>c=sorted(b)>>>c['1zp','34dfwe','54fg
- 人工智能基础知识PPT课件
智慧化智能化数字化方案
方案解读馆人工智能入门人工智能学习人工智能课件人工智能PPT
人工智能基础知识定义与概念:人工智能是研究、开发用于模拟、延伸和扩展人类智能行为的综合性科学,其目的是让计算机系统具备执行人类智能任务的能力。涉及计算机科学、数学等多学科,研究对象是让系统具备智能,智能包括认知、适应和自主能力等维度。学派与方法学派:有符号主义、联结主义、行为主义等学派,分别从不同角度研究人工智能。方法:包括基于知识、学习和仿生的方法,如专家系统、机器学习、深度学习等。分类与发展分
- Spring @Async 注解多线程导致Spring的注解@Transactional失效问题
java小白0.1k
java多线程spring数据库
本文主要解决:Spring@Async注解多线程导致Spring的注解@Transactional失效问题!问题:多线程为什么会导致事务注解@Transactional失效实现AOP的方法有动态代理、编译期,类加载期织入等等,Spring实现AOP的方法则就是利用了动态代理机制,正因如此,才会导致某些情况下@Async和@Transactional不生效。spring多线程的使用:@Async注解
- 智能防御原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!智能防御系统通过**AI驱动的动态感知、主动决策与自治响应**构建自适应防护体系,其核心在于将被动规则匹配升级为**预测性威胁狩猎**,实现对新型攻击(如AI生成的0day漏洞利用)的有效遏制。以下从原理、架构到技术实现进行体系化拆解:---###⚙️核心防御原理####1.**多模态威胁感知**-**跨域数据融合**:-网络层:DPI深度包检测(如Zeek解析T
- Vue3 学习教程,从入门到精通,Vue 3 安装指南及语法知识点详解(2)
Vue3安装指南及语法知识点详解本文将详细介绍Vue3的所有安装方式,并深入讲解Vue3的语法知识点。此外,还将提供一些综合性案例,展示如何综合运用Vue3的各项功能。一、安装Vue3的所有方式Vue3提供了多种安装方式,以适应不同的项目需求和开发环境。以下是主要的安装方式:1.通过CDN引入这是最简单的方式,适用于快速原型开发或学习。步骤:在HTML文件中通过标签引入Vue3的CDN链接。使用V
- 海思平台ISP系列从零开始:一、PQTools工具的使用总结
斟茶兵
海思平台基础的Imagesensor问题分析isp嵌入式
海思平台ISP系列:一.PQTools工具使用方法正所谓工欲善其事必先利其器,磨刀不误砍柴工,想要在海思平台开始IQ,就得利用海思SDK中提供的PQTools工具,这个工具作的很好的,里边有很多图像分析的工具,下面就开始介绍:工具入式如何使用:在海思的SDK开发包中,包含了PQTools使用的软件,以我使用的Hi33516DV300为例,PQTools工具包的目录如下:Hi3516CV500R00
- 【论文阅读】Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
Bosenya12
论文阅读
这篇文章介绍了一个名为Meta-SE的元学习框架,专门用于少样本(few-shot)语音增强问题。文章的核心目标是解决在实际应用中,由于训练样本有限而导致传统深度神经网络(DNN)模型性能受限的问题。Meta-SE通过元学习的方法,利用先验的元知识快速适应新的任务和噪声类型,即使只有少量训练样本也能表现出色。背景知识与研究动机语音增强技术旨在从带噪语音信号中恢复目标语音,提升语音质量和可懂度。深度
- 第一周、、
black_blank
pta练习算法数据结构
7-1入度与出度分数10全屏浏览切换布局作者黄龙军单位绍兴文理学院求有向图G中各顶点的入度与出度。建议分别采用邻接矩阵和邻接表这两种不同的存储结构完成。输入格式:首先输入一个正整数T,表示测试数据的组数,然后是T组测试数据。每组测试第一行输入2个整数n、m(2≤n≤26,1≤m≤n(n-1)/2),分别表示顶点数、边数;然后输入m行,每行包含两个顶点Ai、Bi(大写字母表示),表示Ai到Bi有一条
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f