西蒙・辛格《费马大定理》 书中所得32 2023-10-12

西蒙・辛格《费马大定理》   书中所得32

一、电影和书出自同一人——西蒙・辛格

几年前,因为看了罗振宇的读书节目《罗辑思维》某集中的介绍,读了这本书《费马大定理:一个困惑了世间智者358年的谜》。不久前,又看了书的作者西蒙・辛格自己导演的纪录片《地平线:费马大定理》,而且发现电影是1996年拍摄的,早于成书时间,书是辛格稍后写的。但对我来说,是先看书,后看电影,于是先入为主。

《费马大定理:一个困惑了世间智者358年的谜》

其实,对于学数学的人来说,这是一个耳熟能详的故事,甚至中学课本就出现过。但像辛格这样,把这段数学史活脱脱写成了一部惊险小说,很少见。从表面上看,这似乎只是本数学方面的科普著作。但作者在结构安排上,颇具巧思。

这是书的开头:

《费马大定理——一个困惑了世间智者358年的谜》

西蒙·辛格

如果一个读者,在自己读过的书空白处留下附注,除了他自己之外还会有谁关注?这个问题,《费马大定理——一个困惑了世间智者358年的谜》或许可以给出答案。曾经有人问伟大的逻辑学家大卫·希尔伯特,为什么不去尝试证明费马大定理?他回答说:“我没有那么多时间去浪费在一件可能会失败的事情上。”

二、西蒙·辛格

西蒙・辛格(Simon Singh)1964年9月19日出生于英国萨默塞特郡,具有印度旁遮普血统,曾在伦敦帝国学院学习物理,并获剑桥大学粒子物理学博士学位。在BBC电视台《明日世界》工作5年后,参与了1996年获奖纪录片《地平线:费马大定理》的制作和导演。1999年出版《码书》。

西蒙・辛格

三、经典故事

费马在阅读丢番图(Diophatus)《算术》拉丁文的法文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个不同的立方数之和,或一个四次方幂分成两个不同的四次方幂之和,或者一般地将一个高于二次的方幂分成两个不同数的同次方幂数之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文:Cuius rei demonstrationem mirabilem sane detexi.Hanc marginis exiguitas non caperet.)

费马大定理

费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多大数学家们对这一猜想的兴趣。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。但数学家们的有关工作丰富了数论的内容,推动了数论的发展。

在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最值得为之奋斗的事。

四、费马

皮埃尔·德·费马(Pierre de Fermat,1601年8月17日-1665年1月12日),法国律师和业余数学家。他在数学上的成就不比职业数学家差,他似乎对数论最感兴趣,亦对现代微积分的建立有所贡献,微积分教科书中都有关于极值问题的“费马引理”。他被誉为“业余数学家之王”。费马,是当今常见译法,1980年代的书籍文章也多见译为“费尔玛”的情况,但“费玛”则少见。

五、费马大定理

300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=zn没有非零整数解”。

这就是纯数学中著名的定理—费马大定理。在没有得到严格证明之前,它只能叫做“费马猜想”。

费马

费马(1601年-1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其它定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。

1983年,一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=zn只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一——费尔兹奖。

为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。

1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用130页长的篇幅证明了费马大定理。由此怀尔斯成了整个数学界的英雄。

六、安德鲁·怀尔斯

安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答,怀尔斯被吸引住了。

这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永远不会放弃它。我必须解决它。

10岁的怀尔斯

怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马大定理可能带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coates)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。”科茨说:“我记得一位同事告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。”

科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的一个转折点,椭圆方程的研究是他实现梦想的工具。

1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一个著名的数论学家。但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马大定理的任务也是极为艰巨的。

在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想……我十分清楚,我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。

20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到这个问题中。但是与希尔伯特不一样,他愿意冒这个风险。

怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶楼书房里,他开始了通过谷山-志村猜想来证明费马大定理的战斗。

这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。

经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了费马大定理。


怀尔斯

现在是向世界公布的时候了。

1993年6月底,有一个重要的会议要在剑桥大学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。

1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。200多名数学家聆听了这一演讲,但他们之中只有1/4的人完全懂得黑板上的希腊字母和代数式所表达的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声。”

《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最著名的数学家,也是唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。最有创意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模特。

当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发现了。

由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作。

泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历……它的美是如此地难以形容,它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”

这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”

声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,1996年,他获得沃尔夫奖,并当选为美国科学院外籍院士。

怀尔斯说:“……再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如此少有的特权,在我的成年时期实现我童年的梦想……那段特殊漫长的探索已经结束了,我的心已归于平静。”

怀尔斯与费马大定理

费马大定理只有在相对数学理论的建立之后,才会得到最满意的答案。相对数学理论没有完成之前,谈这个问题是无力的,因为人们对数量和自身的认识,还没有达到一定的高度。

七、358年的难解之谜

在畅销书作家西蒙·辛格(Simon Singh)的笔下,费马那段神秘留言引发的长达358年的猎逐充满了惊险、悬疑、绝望和狂喜。这段历史先后涉及到最多产的数学大师欧拉、最伟大的数学家高斯、由业余转为职业数学家的柯西、英年早逝的天才伽罗瓦、理论兼试验大师库默尔和被誉为“法国历史上知识最为高深的女性”的苏菲·姬尔曼……法国数学天才伽罗瓦的遗言、德国数学爱好者保罗·沃尔夫斯凯尔最后一刻的舍死求生(附注2.)、日本数学界的明日之星谷山丰的神秘自杀(附注4.附注5.)等等,都仿佛是冥冥间上帝导演的宏大戏剧中的一幕,为最后谜底的解开埋下伏笔。终于,普林斯顿的怀尔斯出现了。他找到谜底,把这出戏推向高潮并戛然而止,留下一段耐人回味的传奇。

在怀尔斯不多的接受媒体采访中,美国公众广播网(PBS)NOVA节目对怀尔斯的专访相当精彩有趣,下面节选一段。

附注1.采访怀尔斯节选

NOVA:通常人们通过团队来获得工作上的支持,那么当你碰壁时是怎么解决问题的呢?

怀尔斯:当我被卡住时我会沿着湖边散散步,散步的好处是使你会处于放松状态,同时你的潜意识却在继续工作。通常遇到困扰时你并不需要书桌,而且我随时把笔纸带上,一旦有好主意我会找个长椅坐下来打草稿……

NOVA:这七年一定交织着自我怀疑与成功……你不可能绝对有把握证明。

怀尔斯:我确实相信自己在正确的轨道上,但那并不意味着我一定能达到目标——也许仅仅因为解决难题的方法超出现有的数学,也许我需要的方法下个世纪也不会出现。所以即便我在正确的轨道上,我却可能生活在错误的世纪。

NOVA:最终在1993年,你取得了突破。

怀尔斯:对,那是个5月末的早上。Nada,我的太太,和孩子们出去了。我坐在书桌前思考最后的步骤,不经意间看到了一篇论文,上面的一行字引起了我的注意。它提到了一个19世纪的数学结构,我霎时意识到这就是我该用的。我不停地工作,忘记下楼午饭,到下午三四点时我确信已经证明了费马大定理,然后下楼。Nada很吃惊,以为我这时才回家,我告诉她,我解决了费马大定理。

NOVA:《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》,但他们并不知道这个证明中有个错误。

怀尔斯:那是个存在于关键推导中的错误,但它如此微妙以至于我忽略了。它很抽象,我无法用简单的语言描述,就算是数学家也需要研习两三个月才能弄懂。

NOVA:后来你邀请剑桥的数学家理查德·泰勒来协助工作,并在1994年修正了这个最后的错误。问题是,你的证明和费马的证明是同一个吗?

怀尔斯:不可能。这个证明有150页长,用的是20世纪的方法,在费马时代还不存在。

NOVA:那就是说费马的最初证明还在某个未被发现的角落?

怀尔斯:我不相信他有证明。我觉得他说已经找到解答了是在哄自己。这个难题对业余爱好者如此特别在于它可能被17世纪的数学证明,尽管可能性极其微小。

NOVA:所以也许还有数学家追寻这最初的证明。你该怎么办呢?

怀尔斯:对我来说都一样,费马是我童年的热望。我会再试其他问题……证明了它我有一丝伤感,它已经和我们一起这么久了……人们对我说“你把我的问题夺走了”,我能带给他们其他的东西吗?我感觉到有责任。我希望通过解决这个问题带来的兴奋可以激励青年数学家们解决其他许许多多的难题。

附注2.保罗·沃尔夫斯凯尔

这是书中的一个故事。

19世纪末的一个深夜,位于德国寓所内,一个年轻人正就着灯光,百无聊赖地翻看着数学期刊。

年轻人的大名,叫做保罗·沃尔夫斯凯尔(Paul Wolfskehl),在旁人的眼中,他无非是让人羡慕的成功人士,斯凯尔出身名门,家境优渥,而自己同样通过经商,在青年时期就已经有了阔绰的身家,可是在当年,他却执意要结束自己的生命。

原来在不久前,斯凯尔向自己最心爱的姑娘表达了爱意,却被冷冰冰地拒绝,这是对斯凯尔前所未有的打击,在心灰意冷之下,他决定结束自己的生命。

斯凯尔是一个计划缜密的人,哪怕是自杀,也要进行详细的安排。沃尔夫斯凯尔准备好手枪,详细的制定了自己的计划,决定在某一天午夜零点的钟声中体面地结束自己的人生。之后他按照计划,开始准备自己的身后事,处理商业事物、立下遗嘱、给亲朋好友写绝笔信,等等…

在打算离开世界的这一天,斯凯尔穿好西装,一切准备妥当,时间依然剩下了数个小时。斯凯尔决定到图书馆借一本数学杂志来打发时间,他还是一个数学以及物理的兴趣爱好者。

斯凯尔翻开杂志之后,却被期刊上的一篇论文给深深吸引住了,这是著名德国数学家库摩尔所写的一篇文章。库摩尔在文章中解释为何柯西和拉梅证明费马大定理的方法行不通,他还提出一种“理想素数”理论,或许能够解决困扰人类百年的“费马大定理”问题。

沃尔夫斯凯尔在阅读论文的过程中发现了一个逻辑漏洞,于是他激动地开始计算验证直到黎明,补足了库默尔的缺陷。

在那个夜晚,斯凯尔全身心被库摩尔的文章所吸引,他如痴如醉地钻研,以至于午夜钟声敲响,斯凯尔却全然不觉…

故事由此转折。为此他感到十分激动和骄傲,认识到除了爱情,还有别的活着的意义。


沃尔夫斯凯尔

时光荏苒,到了1908年6月27日,德国著名的实业家、大富翁沃尔夫斯凯尔去世,留下了巨额的遗产。斯凯尔的遗嘱,更是在数学界内掀起了滔天巨浪。

原来这样的一位富豪,将自己的部分遗产捐赠,成立了沃尔夫斯凯尔奖,并且委托给哥廷根皇家科学学会进行保管:“根据保罗·沃尔夫斯凯尔博士授予我们的权利,在此设立10万马克的奖金,用于颁授给第一个证明费马大定理的人,有效期截止到2007年9月…”

斯凯尔留下的10万马克,价值在200万美元左右,这在当时是一个什么概念呢?同一时代刚刚成立的诺贝尔奖,其金额在15万瑞典克朗,也就是3万美元左右,在诺奖基金会看来,3万美元已经能够符合一名大学教授“衣食无忧研发20年”的基本条件,而200万美元,更是大部分人望尘莫及的数字。

沃尔夫斯凯尔的家人,同样陷入了震惊当中,毕竟这位富豪生前并没有和他们说起自己的这个计划,而遗嘱当中,沃尔夫斯凯尔这才叙说起年轻时期的往事。

在他看来,费马大定理拯救了他原本在青春时期就应该结束的生命,虽然斯凯尔在一生当中都没有解决这个问题,数学却也让他意识到,生命有更多值得珍惜的地方,因此沃尔夫斯凯尔也设置下这个奖项,希望将来的人们能够破解这个难题。

在1908年以后,几乎每一年都有成千上万的人向哥廷根皇家科学协会写去自己证明费马大定理的手稿,然而验证过后却基本没有什么有价值的信息,这不得不迫使科学协会的人员提前预写证明否定书。

怀尔斯在1997年领取了德国哥廷根大学的沃尔夫斯凯尔奖金,此时距离时间期限仅仅剩下10年的时间。而且因为通货膨胀的缘故,奖金从过去的200万美金缩水到大约5万美元。但是数学的魅力,显然不是金钱能够衡量的。数学挽救了斯凯尔的性命,也为人类带来了无穷无尽的财富。

于是,有人调侃,年轻人求爱失败时千万不要寻短见,你还有数学题呢!

附注3.谷山-志村定理

由谷山-志村定理可以推出费马大定理,怀尔斯就是这么做的。

谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(某种数论中用到的周期性全纯函数)之间的重要联系。虽然名字是从谷山-志村猜想而来,定理的证明是由安德鲁·怀尔斯, Christophe Breuil, Brian Conrad, Fred Diamond和Richard Taylor完成。

若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列

ap = np − p,

这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。谷山-志村定理说:“所有Q上的椭圆曲线是模的”。

该定理在1955年9月由谷山丰提出猜想。到1957年为止,他和志村五郎一起改进了严格性。谷山于1958年自杀身亡。在1960年代,它和统一数学中的猜想Langlands纲领联系了起来,并是关键的组成部分。猜想由André Weil于1970年代重新提起并得到推广,Weil的名字有一段时间和它联系在一起。尽管有明显的用处,这个问题的深度在后来的发展之前并未被人们所感觉到。

在1980年代当Gerhard Freay提出谷山-志村猜想(那时还是猜想)蕴含着费马大定理的时候,它吸引到了不少注意力。他通过试图表明费尔马大定理的任何范例会导致一个非模的椭圆曲线来做到这一点。Ken Ribet后来证明了这一结果。在1995年,Andrew Wiles和Richard Taylor证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理。

数论中类似于费尔马最后定理得几个定理可以从谷山-志村定理得到。例如:没有立方可以写成两个互质n次幂的和, n ≥ 3. (n = 3的情况已为欧拉所知)

在1996年三月,Wiles和Robert Langlands分享了沃尔夫奖。虽然他们都没有完成给予他们这个成就的定理的完整形式,他们还是被认为对最终完成的证明有着决定性影响。

附注4.谷山丰

谷山丰(谷山豊,Taniyama Yutaka,1927年11月12日-1958年11月17日),日本数学家。毕业于东京大学,后来跟随志村五郎攻读博士学位。他的兴趣是虚数乘法论,他和志村五郎合著有《近代的整数论》。


谷山丰

1958年他当上了东京大学的助理教授。同一年,基于一些他自己也不理解的原因,在结婚前,他突然自杀了。一个月后,新娘子也自杀了。

附注5.志村五郎回忆谷山丰

志村五郎(1930年2月23日-2019年5月3日 ),男,日本数学家,出生在静冈县,毕业于东京大学,也是普林斯顿大学名誉教授。他和谷山丰共同提出的谷山-志村猜想是解决费马最后定理的核心。


志村五郎

《谷山丰的一生(Yutaka Taniyama and his time)》志村五郎

第一部分

谈及谷山丰的一生,我们首先要追溯到上个世纪六十年代中后期。值得注意的是,那时日本的情况与现在完全不同,更不能与现在甚至那时的美国和欧洲相比。“污染”还没有成为像现在这样家喻户晓的词汇,在天晴日丽的时候,从东京市中心甚至可以看到向西70公里外的富士山在朝阳中皑皑的山顶或是晚霞中的巍巍的轮廓。伴随着战争的灾难与离别的年代已成为过去,但并没有被忘记,至少不再忍受饥饿。整个国家开始变得朝气蓬勃而充满希望,尽管依然贫穷。这一点无论在整体还是个人都体现出来。谷山和他所在的那一代人同样如此。当然,无论对于哪一个时代,哪一个国家,人们在创业伊始,总是注定要与雄心和贫穷相伴。

与那时的其他人相比,谷山他并不是特别的穷困。我想他一直没有遇到什么太大的经济问题,尽管他的生活决谈不上舒适,就如同我们大部分人一样。至少,他也均匀的分享了那个时期广泛存在的贫困的生活。例如,他住在一间81平方英尺(7.5平方米)的单人间公寓里,带有一个盥洗池,门后有一小块没有铺地板的部分。每间房间里都有独立的自来水、煤气和电力供应,但是厕所每层只有一间。然而,在这所两层的公寓里,每层大约有12间左右的房间。至少我记得他住在二层的门牌号为20的房间,很靠近最后一间。这事实上更像是宿舍而非公寓,但是这确是那时的普遍情况。如果要洗澡的话,则需要去公共浴室,从他的公寓走几分钟即可以到达。澡堂是一栋破旧的木质建筑,却拥有一个诗情画意的名字:宁静山庄。但这似乎只表达了一个还未实现的梦想,因为这做建筑位于一条狭窄的街道中,而且街道的两旁汇集了喧闹的零售商店。而在街道旁边是一条铁道,每隔几分钟便有列车呼啸而过。那时还没有集中供暖系统,空调更是不可想象。但是东京那不可计数的咖啡馆在人们需要的时候,却可以提供些奢侈的凉爽。同样,那里也是探讨各种数学与非数学问题的良好场所,咖啡只要50日元一杯。那时1美元合360日元,而谷山作为东京大学的讲师一月的工资不会超过15,000日元。

对于家政,他似乎总是很懒散。至少他很少下厨,他总是喜欢到小店里去吃饭。在他所喜欢的西餐中,有一道是炖舌头,250日元一盘。对于其他的高级西式菜,偶尔他才可以选择那些最便宜的好好享受一番。除了夏天,他总是穿这一件闪烁着奇怪金属光泽的蓝绿色的套装,我甚至想说这是他唯一的穿着。有一次他向我解释了这件衣服的由来。他的父亲从小贩手中以极其便宜的价格买到了这件衣服的布料。但是由于这奇怪的金属色泽,家里没有人愿意穿。最后他自愿让人用这个布料为自己做了这套衣服,因为他并不在意自己是什么样子。他的鞋带总是松开的,并且总是拖在地上。由于他无法保证鞋带总是系紧,所以当鞋带松的时候,他干脆就不再管它。

这就是一位早早的离开了他的生命里程的数学家,为他的同辈以及后人留下了永恒的激励。

Yutaka Taniyama(谷山丰),出生于11月12日,1927年。他是他母亲Sahei, 和他父亲Kaku Taniyama的第三个儿子,和第六个孩子。同时他有三个兄弟和四个姐妹。而他父母都很长寿,活过了九十岁。他的名可以表达为一个中国汉字,而且他曾经告诉我可以发音为“Toyo”。但如果我记得没错的话,似乎本来也应当这样发音。但是当他长大以后,他身边的人,除了他的家人,都将它发音为“Yutaka”。随之他也接受了这样的称呼,从此他就成了“Taniyama Yutaka”。至少他总是在文章上属这个名字,当然有时会是相反的顺序。我对他的童年生活,以及国中时代几乎一无所知。唯一清楚的是在读高中时,他曾经因为染上肺结核而休学两年。而在我的记忆中,每隔10到15分钟,他就会开始咳嗽。

他的父亲是当地一位知名的儿科医生,且对于大部分的病,都能够开药治疗。这事实上是当时日本最为需要的医生职业类型。我只见过他一面。他在他八十多岁的时候,依然充满活力,而我认为他应当属于那种自力自强的人。我们见面不久,他就给我在东京大学的一位同时去见他的同事来了封信。这位老先生似乎认为我的同事在学术上并不成功,他建议我的同事多吃一些富含维生素B(或许是维生素C,当然也有可能是钙)的食品,这样对他的脑力工作非常有利。由于这是在谷山丰去世之后,我已经没有机会去搞清楚这位父亲是否也给他同样的建议。

谷山于1953年3月从东京大学毕业,尽管他的年龄比我大,我却是在1952年毕业。这是由于他的疾病造成的。我在1950年时就认识他,但我们真正有了数学上的交往则要到1954年初。当时我写了一封信要求他归还第124卷数学年鉴,因为在那一册里有Deuring一篇关于复乘法的代数理论的文章。谷山在几星期前将书借出。而在上一年的12月,我将我关于模p约简代数簇的文章寄给在芝加哥的André Weil,并且我想将这套理论应用于阿贝尔簇,尤其是椭圆曲线。在谷山给我的回信中,他告诉我他有同样的打算,并且礼貌的询问我是否可以向他讲解一下我的理论。现在回想起来,他事实上有着更为广博的知识和更为深刻的洞见,在数学上比我要更加成熟,但我当时还并不清楚这一点。

我依然保存着那张明信片,盖着1954年1月23日的邮戳。时隔三十年,明信片已经很旧了,但是还是留有他清晰的笔迹。上面有他父母家的地址,他暂时住在那里。那是一个不起眼的小镇,叫做Kisai。大约在东京大学以北30英里的地方,还是半乡村半城镇的样子。偶然的,他出生于那里,成长于那里。而大概只有上帝才能预见到,五年半之后,我将在那里一座庙宇的后面参加他的葬礼,站在他的墓碑前。

在我们通信期间,他是所谓的“特别研究学生”(special research student),而我则是助理研究员(assistant),但事实上我们并没有什么本质的区别。如果真有什么不同的话,那可能就是工资中的津贴有些不同。他在数学系,那里的教授负责本科三,四年级的课程,而我则属于另外一个负责本科一,二年级课程的部门,位于另外一个称为通识教育学院(College of general education)的校区。这种分隔是在此之前我们很少接触的主要原因,另外一个原因则是我们双方在性格上都有些羞涩。但最终我们都成为后一个部门的讲师。在他死去的时候,他已经晋升为副教授。

但不管我们是什么样的职位,我们在1954年到1955年期间事实上都是没有指导教师的研究生。但我们却有教学任务,至少就我而言,相当于一所美国大学两门本科课程的教学量。这种情况几乎适用于我们这一代所有的日本数学家。唯一的好处是我们大多数往往作为助理研究员时便得到了终身职位。而无论怎么说,那些老一辈的数学家们都不具备指导学生的能力。尽管如此,他们中的一些人还是会时不时地给一些毫无意义的指导。有一次,我们中的一员偶然的在火车上遇到一位五十多岁的教授,后者便问及前者的研究兴趣。当听说他在研究Siegel关于二次型的理论,那位老人说到:“嗯,二次型啊。像你这样年轻,可能还并不清楚,Minkowski在这方面有很多工作。”我的同事随后向我谈论了这件事,他模仿着那位教师自大的样子说道:“我当然知道Minkowski的在这方面有所贡献,但是他对Siegel的理论能有什么贡献?”我也曾经听到很多类似这样的无谓的建议和指导。

我觉得这些教授可能是在试图模仿他们的前辈,尤其是其中一位令人景仰的人物,他一定做了很多这样的评论。但是我总倾向于认为大部分这种评论是毫无意义的。或者他们总是试图以他们的方式表明自己依然在行,但却没有意识到像谷山这样新的一代早已超越了他们。对于这一点,我们将随后给出证明。我必须说明谷山从未给过这种自以为是的建议,对于那些比他年轻的人,他的建议总是专业而务实的。

不管怎样,我们都对这些滑稽无用的建议不予考虑,但把它们看作对我们的警示:我们无法依赖别人,只有我们自己。确实,在这两代数学家中间的一代中,有一些已经成名或者即将成名的杰出数学家。但事实上他们中的大部分人不是已经在国外,就是很快就离开了日本。例如,Kodaira 和 iwasawa 在美国,然后Igusa 和Matsusaka 也随之而去。

在1950年左右,希尔伯特第五问题是一个经常谈论的的话题,而类域论的算术化,甚至是格理论也被提及。但是上述问题却毫无吸引力,更多的人投入到代数几何的研究当中。在那时,Chevalley 的《李群理论》和 Weil 的《代数几何基础》是两本被广泛阅读的书籍。前者往往会被通读,而后者则一般会在完成前二十页的阅读后被放弃。

在他的本科时代,谷山就已经阅读了这两本书,以及Weil随后两本关于曲线与阿贝尔簇的书籍。谷山曾经上过Masao Sugawara的《代数》这门课,他曾经写道Sugawara影响了他,并使他步入数论领域。Sugawara是我所在的系里一位年长的教授,他曾经就复乘法,以及高维空间的不连续群发表过一些文章。但是,我对谷山的这种说法感到疑惑,因为我觉得Sugawara毫无创意,尽管我喜欢他并且尊重他的为人。但就我自己而言,在这段时间里,我个人完全只受我的同代人影响,尤其是谷山。而这些人中,没有人超过三十岁。我想在本质上,他也应当是这样。

事实也正是如此,他的学识往往来自那时许多学生自己组织的讨论班。他是那些讨论班动力的源泉,并且如饥似渴的吸收这尽可能多的知识。他那时,也有可能是再晚一些的时候,一定学习了Hecke关于狄利克莱级数与模形式的论文 Nos 33,35,36和38中的一部分。当我们在同一个系里的时候,当我无法从图书馆得到相关杂志的拷贝时,他总是慷慨地将这方面他的笔记借给我。

第二部分

他的第一个非平凡的工作是《关于阿贝尔函数域上n-分点的问题》,也许最终成为他四年级时的论文,尽管那并不是必须完成的。由于这篇文章旨在我对他的一些个人的回忆,我无意于在此细致的论述他的工作。所以我只简略的说这篇文章根据Hasse的一些想法,以及Weil的一篇文章(数学年鉴 1951),给出了Mordell-Weil定理的一个证明。而在1953年,他是日本唯一一位在此问题上具备相关工作的知识的人。我至今依然清晰地记得他在Chevally于1954年春在东京大学举办的讨论班上,给出的关于这个工作的几个报告。

如前所述,他曾经一度对阿贝尔簇上的复乘法很有兴趣。他首先考虑了一条超椭圆曲线的Jacobian簇的情形,最终归结于更一般的阿贝尔簇的情形。由于在这个领域里很多事情还没有搞清楚,必须要面对许多困难而“奋力的战斗”,并且在不断的尝试与错误之间“艰苦的求索”。他曾经说任何一个数学家在进行实质性的数学研究中,都会有上面描述的过程。在他的数学中,几乎没有“徒劳无功”这个概念,至少他从未有过这样的观点。或许在其他人看来并非如此,但是他却在“战斗与求索”之中找到了无限的乐趣。他在1955年9月在东京-日光(Tokyo-Nikko)举办的代数数论研讨会上发表了他的结果。他在那里见到了Weil, 并且吸收了Weil的一些观点。他随后发表了他关于阿贝尔簇和某种Hecke-L函数的联系的文章的一个改进版本,那是那个时代的顶尖之作。(L-functions of number fields and zeta functions of abelian varieties)

在那篇文章中并未包含的内容,以及一些与我合作的工作则开始列入计划,我在这个问题上也取得了一些独立的成果。我们在这个问题上一起工作,而合作的风格,以今天的标准,可以被称为是“悠闲”的。我们的生活非常的放松,甚至说过于放松,相互毫无竞争可言。这一点恐怕要被80年代的那些年轻数学家所羡慕。我们要感谢Yasuo Akizuki,因为他说服我们为他任编辑的数学单行本系列丛书(Sereis of mathematical monographs)撰写一册,从而加快了我们的计划。

在这段合作期间里,我经常去拜访他的“别墅”来探讨一些事情,因为那里比学校离我的住处更近。他总是在夜里工作到很晚。我在1957年的日记写道:星期四下午,4月4日,2:20 p.m.,我拜访了他的住宅,他还在睡觉,而他说他早上6:00才睡。另外一次,好像是早晨晚一些时候,我敲他的门却没有回应,于是我就去了系里,花了大约一个半小时的火车路程。我在系里找到了他,对他说:“在此之前我去过了你的住处。”对此他则回答:“嗯,那时我在那里吗?”他立即意识到他话中的破绽而感到非常尴尬,但是依然辩解称:“你知道,那个时候我经常在睡觉的。”

我发现他在许多方面与我不同。例如,我一直是一个习惯于早起的人。曾经一段时间,我认他更加理性化,而我总是随意而无常,但或许我是错的。但我们却有一些共同点:我们都是一个大家庭中排位靠后的小孩。我是家里第五个孩子,也是最后一个。我之所以提到这一点,是因为我曾经很讨厌日本家庭中长子们那种自我为中心的态度。虽然他并不是那种粗心大意的类型,但是谷山似乎天生就善于犯错误,而且绝大部分错误总是指向正确的方向。在这一点我很羡慕他,却没有办法模仿他。对我来说,犯一个“好”的错误是何其之难。

我们一起完成的《现代数论》于1957年7月出版。我们下一个任务显然是完成它的英文版本。尽管我们需要以更好的形式完成它,但是我们对此却都丧失了热情。第一个显然的原因是我们松懈了下来,因为总觉得我们至少已经写出了这本书,尽管是日文版。另外一个原因则更加实际一些:今年秋天我将去法国,而这使我一直无法歇下来。然而,更加本质的原因则可以引用书中前沿的一段话来说明:

我们很难说这个理论以其令人满意的形式给出。但不管如何,我们至少可以说:我们已经在攀登的旅途中前进到了一定的高度,这使得我们可以回顾以往的脚印,并对最终的目标有一定的认识。

用精炼的语言来说,我们必须寻找更好的表述和更加细致的结果。那一年,我们已经考虑以adele的语言重写整个理论,或许本应该朝这个方向努力,但我们并没有。另外,作为一种心理反应,一旦人们证明了些什么,他总会倾向于去得到新的理论,而非去润色已知的结果。确实,我们两人都开始对各种类型的模形式发生兴趣,而这条道路令人更加兴奋。于是,我们在东京与巴黎之间的通信总是围绕这一方面的问题。在1958年的春天,他告诉我一些新消息:东京迎来了Siegel和Eichler,他们将给一系列报告。前者的报告有关二次型的约简理论,而后者则是有关他最新的研究工作。同时,在巴黎,Cartan的讨论班开始围绕Siegel模形式展开。

我比他更加频繁的去信,而他在这段期间只回了两封信。在日期为1958年9月22日的第二封信中,这也是他现存的信件中很晚的一封,他提到希尔伯特模形式和某种狄利克莱级数之间的Hecke类型的关联可以由GL(2)的adele群来给出。但是,如同信中的语气所暗示的,他的热情在减弱。他知道仅仅给出这种方法的可行性是远远不够的,这里需要一个真正的突破。显然更多的工作需要完成;事实上他写道:由于天气太热,我已经一个月没有在这上面工作了,但我马上会重新考虑它。或许给足够的时间让他去专心考虑,他会在这上面成功,但是他永远地将这未完成的工作留了下来。因为他将在两个月后永远地离开我们,而这无论对于寄信的人还是收信的人,都是无论如何也不会想到的。

至于我们一起合作的工作,在他死后情形则完全改变,我将随后论述。而他将我独自留在世间,我则将他未完成的工作看作我的职责。我尽可能快地去完成这项工作。尽管我对我得到的计算公式并不完全满意,但最终在1961年的春天,“阿贝尔簇上的复乘法及其在数论中的应用”这篇文章得以发表。文章的题目是他在一封信里建议的。我又花了十年的时间从一个更好的观点来梳理这项工作,而后又花了五年的时间,如他所愿,采用theta函数的方式论述了整个理论。但是,无论怎样,那个本应因此而感到高兴的男人,早已离开了我们。

最后一部分

谈及他的私人生活,以及他最后的日子,则首先要回到1955年。那时我们已经是同一个讨论班的成员,而在这一年的十二月,他来到我所在的部门工作之后,我们的关系变得更加亲密。而我们往往一起承担各种工作。例如,由于职责所需,我们要在某个办公室中一起批改入学考试试卷,每人要分担超过5,000份。然而,对我们来说幸运的是,同样对考生来说不幸的是,大部分试卷都是白卷。

在那些惬意的日子里,我们和许多其他的朋友一同分享快乐。在咖啡店中度过那些轻松的时光,在周六的下午徜徉于市里的植物园,或者郊外的公园。在傍晚,我们则在那些专卖鲸鱼肉的餐馆中用餐,而这在当时并不被认为是过于闲致的生活,在今天却难以想象。在学校一天的工作之后,我们常常一起散步到很远,去拜访神道教的神社,买一些写在小纸片上的“神谕”以自娱,那些“神谕”被认为可以告知我们的命运。

有一次我们一起在火车上时,他问我下一站的名字,我则回答:下一站将到达“车站”,而再下一站则是“下一个车站”。这让他非常开心,因为他第一次听到这个笑话。而我则不得不向他解释说,我只是模仿了那时收音机里一出流行喜剧的一段台词而已。他于是马上就买了一台收音机,后来又有了一台唱片机和一堆的唱片。在我们前面提到的最后一封信里,他写道:最近我一遍又一遍的听贝多芬的第八交响曲。我想这些和看电影大概就是他独自一人时所有的娱乐。他很喜欢一部电影《国王与我》。我不认为他会演奏某种乐器,更谈不上擅长运动。他不喝酒,不吸烟,也无嗜好。他并不热衷于旅游;甚或,在我看来,他尽他所能逃避出游,或许这是由于他孱弱的身体。我想京都或许就是他一生中到过的最远的地方了。作为一名受过教育的人,他一定读过那些经典名著。但对于那些日本或国外的当代作家的小说,我认为他并非一名热心读者。他对历史也毫无兴趣,除非与数学有关。

然而,他早年曾经花费大量的时间和精力就一些学术上的相关话题写一些期刊文章。写作涉及方方面面:像如何培养一名数学工作者,如何组织一个数学机构,对他人的一些旧文章的评论,书评,等等等等。他写起这些文章来速度很快,写完之后也很少修改。或许他是通过写作来梳理他的想法。他写作风格简单明了,比起他的报告来好很多。有时,他在文章中会显得比谈话时显得更加兴奋。说实话,我觉得他这种喜好很可惜,这实在是在浪费他宝贵的时间。而写每一篇文章的原因,都不足以然他花费如此多的努力。尽管我从未向他鲜明的提及我的看法,但是有一次他听了我关于放任政策的一些看法,几天后他就给我一份关于这个主题的粗略的手稿,其中讽刺了我在讲话时的仪态。我当然表示了不满,他也就将那一部分删去了。

他对他的同事总是很友好,对那些比他年轻的人更是如此,他真诚地去关心他们的生活。但是同样的,或许有些过于苛求,我想这也大大减少了他从写作中获得的乐趣。如果真的如此,我对此并不会感到太惋惜。

我想我应当在这里结束这种散漫的对他生活的描写,而去回忆他最后的几个月。在那些时日里,我们充满了青春的激情与愿望,可以说在各个方面,无论是在学术上,还是在生活上。而谈及后者,我想那时的情绪可以用一句话概况:没有人会去相信包办婚姻——嗯,几乎没有。或许我们中有人会认为,这种婚姻是为那些资产阶级们准备的,我们无产阶级则应当鄙视这种邪恶的行为,当然这显然是夸大其词了。事实上,当我在1959年一个炎热的夏日,大约是在他去世后八个月,和一些朋友一起给他的家里打电话表示慰问时,他家里的长男,但也可能是他的爸爸,向我介绍对象,而对方则是一位知名画家的女儿。我随之在一次舞会上尴尬的询问一位女伴该如何应对,她告诉我一本礼仪书籍建议人们应当如此如此回答。我于是在回复中机械地重复了那些说法,但结果却是招致了一通大笑。而这件事也就到此为止。

我曾经为一个想法感到好笑:这个女孩或许开始时也是准备介绍给谷山的。如果真的是这样,我肯定会因次而与她结婚,尽管这个论点毫无疑问会遭到我夫人的嘲笑。但不管他的家里是如何希望的,他自己选择了自己的伴侣,并最终获得了双方父母的同意。她的名字叫铃木美沙子(Misako Suzuki).他常常愿意将她称为M.S.,对于她我将予以介绍。但是我还是要先回到主题上来。

我想当他见到她时,她是他狭小而松散的社交圈中一位朋友的朋友的朋友。我还清楚地记得她在她母亲的帮助下,在家里举办的晚宴聚会。参加的人有谷山,山崎(K.Yamazaki),他的未婚妻,还有我。那是在我即将离开去法国的时候,在1957年的9月。这次聚会,虽然是为我送别举办的,却十分平静,并不像在其它地方这种类型的聚会。我记得席间,她就他的沉默寡言开玩笑。同样的五个人在这一年的4月也曾一起聚会,我想这几乎就应当是他们两个人第一见面的时侯。那时候有许多这样度过的夜晚,只是随着情形不同,人员也有所差别。

相对来说,美沙子是我的社交圈中一位新的成员,所以我一直并不是很了解她。她看起来是那种典型的好女孩,来自于一个典型的中上阶层的家庭。她说话很流利,是标准的东京口音。她是独女,并且要比他小五岁。当传来他们订婚的消息时,我有些吃惊。因为我曾经模糊的感觉两人并不般配,但我却并未感到疑虑。

我随后听说他们一起租了一间很不错的公寓。他们一起为了他们的新家置办厨具,并开始准备婚礼。在他们的朋友看来,一切充满了喜悦与希望。然而,悲剧却悄然降临了。1958年11月17日,星期四,清晨,公寓(这是我们最先提到的那所)的房屋管理员发现他死在他的房间里,在桌上留有一些纸张。他的遗嘱被写在其中三张纸上,而这些纸来自于他经常用来研究数学的笔记本。上面的第一段这样写道:

直到昨天,我自己还没有明确的自杀意图。但一定有些人已经注意到,近一段时日以来,无论在身体上还是精神上我都感到很疲倦。至于我自杀的原因,尽管我也不了解我自己,但这决非由于某件特殊的事情,或者某个特定的原因。我只能说,我被对未来的绝望所困住。或许有人会因为我的自杀而苦恼,甚至受到某种程度的打击。我由衷地希望这件事不会为他们的将来带来阴影。但无论怎样,这实际上都是一种背叛。我请求你们原谅,将这作为我最后一次以我自己的方式来行事。毕竟终其一生,我都在以我自己的方式行事。

他随后逐条列出了对于他的物品的安排,以及哪些书和唱片应当归还图书馆和他的朋友,等等。对于他的未婚妻,他特别提及:“我愿意将我的唱片和唱片机送给她,如果她对此并不感到烦恼的话。”他同时也说明了他所教授的课程“微积分”与“线性代数”的进度,并留下了一份笔记,在上面他对这个举动所造成的不便,向他的同事们道歉。

就这样,在那个时代中一位最为杰出和开创性的数学家自己结束了自己的历程。那时离他31岁的生日还有5天。

这无可避免的掀起了风暴,随之是葬礼,他记忆中所有的的亲友、同事聚集在一起。他们都感到非常的迷惑,他们相互询问他自杀的缘由,但却找不到可信的原因。从他的未婚妻那里,他们得知在那个不幸的早晨的前几天,他还打算去看望她。似乎上天注定他只能是一个纯粹的数学家,而不能成为一个家庭中的男人。我最终以此来安慰自己,但那已是很多年以后的事了。

不管怎样,几星期之后,人们慢慢地从震惊与悲痛中恢复了过来,似乎人们已经开始回到日常的生活。然而,在十二月清冷的一天,美沙子在他们原本准备作为新房的公寓中自杀。她留下了一份遗嘱,但从未公布。我只听说其中大致有这样一段话:“我们曾相互承诺,无论到哪里我们都会永远在一起。现在他离开了,我也必须离开去跟随他。”

当这一系列的悲剧发生时,我在普林斯顿大学作为高等研究所中的一员。所以这些细节都是我在1959年的春天回东京后,Kuga和Yamazaki告诉我的。谷山本应当在这一年的秋天去高等研究院,而我也原本打算在那里再呆一年,但我最终选择了离去。

当我回家的时候,已是樱花烂漫的季节,眼帘中处处是深绿色的树叶。借助一句常用的描述:春色轻盈的掠过。在我离开这这一年半里,东京的街道依然喧闹,依然充满世俗的气息。但是人却不一样了。我也如此。尽管随后转型的那段时期即将到来,但在这晚春的日子里,我只能无助的面对这样一个事实:已经无法再举办两年前那样的聚会了,那段快乐激昂的日子已经过去了。

作为这篇文章的结束,我或许应当反问自己:谷山丰是怎样的人?这并不是去问及某个数学史中的形象。我想说的是他的存在对于他的同代人,尤其是我,会有怎样的意义。自然而然,我所写下的或许可以看作对这个问题的一个长长的解答。但如果简而言之,我应当指出,写到这里,整篇文章无非是要说:对于许多跟他进行数学探讨的人来说,当然包括我自己在内,他是我们的精神支柱。或许他自己从未意识到他的意义。但是甚至与他在世时相比,我在此刻能够更加强烈的感受到他那时在这方面高尚的慷慨大度。然而在他陷入绝望的时候,我们却没有人给他以支持。每当念及于此,我都陷入令人心酸的悲伤之中。

你可能感兴趣的:(西蒙・辛格《费马大定理》 书中所得32 2023-10-12)