分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】

分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】

目录

    • 分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】(完整源码和数据)
2.自带数据,多输入,单输出,多分类。图很多,包括迭代曲线图、混淆矩阵图、预测效果图等等。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2023及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

模型描述

递归图(recurrence plot, RP)是分析时间序列周期性、混沌性以及非平稳性的一个重要方法,可以揭示时间序列的内部结构,给出有关相似性、信息量和预测性的先验知识。递归图特别适合短时间序列数据,可以检验时间序列的平稳性、内在相似性。
RP–LSTM-Attention是一种递归图优化的长短期记忆神经网络(LSTM),同时结合了注意力机制,用于数据分类预测。这种模型在处理序列数据时能够更好地捕捉时序信息和重要特征,并提高分类性能。

程序设计

  • 完整程序和数据私信博主回复Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】
%%  参数设置
 
%% 建立模型
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
    lstmLayer(best_hd, "Name", "lstm", "OutputMode","last")             
    fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
    softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

你可能感兴趣的:(分类预测,RP-LSTM,LSTM-Attention,递归图优化,长短期记忆神经网络,注意力机制,数据分类预测)