人工智能浅研报告

基础“AI入门”是指人工智能相关的基本概念。大多数人工智能算法是接受一个输入数组,从而产生一个输出数组—人工智能所能解决的问题通常被归化为此类模型。而在算法模型内部,还需要有额外的数组来存储长短期记忆。算法的训练实际上就是通过调整长期记忆的值来产生对应于给定输入的预期输出的一个过程。

算法一“ 数据归一化”是指大多数人工智能算法对原始数据的预处理流程。数据需要以一个输入数组的形式传递给算法,但实践中获取到的数据并不一定都是数值型的,也有一些是类别信息,比如颜色、形状、性别、物种抑或其他一些非数值型的描述性特征。此外,就算是现成的数值型数据,也必须在一定范围内归一化,并且通常是归一化到 (-1, 1) 区间。

算法二“距离度量”是指我们比较数据的方法,说起来这种比较方法其实跟在地图上标识出两点间的距离十分相像。人工智能通常以数值数组的形式处理数据,包括输入数据、输出数据、长期记忆、短期记忆和其他很多数据都是如此,这些数组很多时候也被称作“向量”。我们可以像计算两点间距离一样,计算出两个数据之间的差异(二维和三维的点可以分别看作长度为二和三的向量)。当然,在人工智能领域,我们经常要处理的是更高维空间中的数据。

算法三“随机数生成”是指人工智能算法中随机数的生成和使用。关于均匀随机数和正态随机数的研究切入——出现这种不同的根源在于有的时候算法要求随机数具有等可能性,而有的时候又需要它们服从某种既定的分布。此外我们要探索生成随机数的方法。

算法四“K均值聚类算法”是指将数据按相似度分类的方法。K均值算法本身可以用来将数据按共性分组,同时也可以被用于组成更复杂的算法—比如遗传算法就利用K均值算法对种群按特征归类,各路网商也利用聚类算法划分顾客,依照同类型顾客的消费习惯调整销售策略。

算法五“误差计算”是指评估人工智能算法效果的方法。误差计算的过程由一个用以评估算法最终效果的评分函数执行,其结果决定了算法的效果。一类常用的评分函数只需要给定输入向量和预期输出向量,也就是所谓的“训练数据”;算法的效果则由实际输出与预期输出间的差异决定。

算法六“迈向机器学习”是指从数据中学习特征来优化结果的简单机器学习算法。大多数人工智能算法是用权值向量将输入向量转化为期望的输出向量,这些权值向量构成了算法的长期记忆,“训练”就是一个调整长期记忆以产生预期输出的过程。具有学习能力的简单模型的构建方法,简单但却行之有效的训练算法,能够调整这种长期记忆(权重向量)并优化输出结果—简单随机漫步和爬山算法正是其中之二。

算法七“优化训练”是指在前面六种算法基础上进行了一定的拓展,介绍了像模拟退火算法和Nelder-Mead法[2]这样用来快速优化人工智能模型权重的算法。通过前面六种算法基础来如何通过一定的调整,将这些优化算法应用于之前提到过的部分模型。

算法八“离散优化”是指如何优化非数值型的类别型数据。并非所有优化问题都是数值型的,还有离散型和类别型问题,比如背包问题和旅行商问题。如何模拟退火算法可以用于处理这两个问题,并且该算法既适用于连续的数值型问题,也适用于离散的类别型问题。

算法九“线性回归”是指如何用线性和非线性方程来学习趋势并做出预测。如何简单线性回归,并演示如何用它来拟合数据为线性模型。此外还将介绍可以拟合非线性数据的广义线性模型(General Linear Model,GLM)。

你可能感兴趣的:(人工智能浅研报告)