- AI优化算法实战:使用粒子群优化求解复杂工程问题
AI学长带你学AI
ai
AI优化算法实战:使用粒子群优化求解复杂工程问题关键词:粒子群优化(PSO)、全局优化、工程问题、智能算法、参数调优摘要:本文以“鸟群觅食”为灵感来源,深入浅出地讲解粒子群优化(ParticleSwarmOptimization,PSO)算法的核心原理,并通过机械结构轻量化设计的实战案例,展示其在复杂工程问题中的应用。文章从算法起源到数学模型,从代码实现到工程落地,层层拆解技术细节,帮助读者快速掌
- 在vue3中通过jspdf+html2canvas实现导出页面pdf功能
落晓星
pdfvue.js前端ruoyi
一、安装依赖npminstallhtml2canvasjspdf二、创建Vue组件下载文件importhtml2canvasfrom'html2canvas';importjsPDFfrom'jspdf';constroute=useRoute();//当前idconstpolicyExplainId=ref(route.params.id);constloading=ref(false);//详
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- 如何在CentOS7上搭建自己的GitLab仓库详解
ytttr873
gitlab
在CentOS7上搭建自己的GitLab仓库的详细步骤如下:更新系统:在开始之前,确保您的系统已经更新到最新版本。打开终端,并执行以下命令:sudoyumupdate-y安装依赖:在安装GitLab之前,需要安装一些依赖项。执行以下命令来安装所需的软件包:sudoyuminstall-ycurlpolicycoreutils-pythonopenssh-server添加GitLab仓库:执行以下命
- 布线后优化(PostRoute Optimization)解析
weixin_45371279
innovus
AboutPostRouteOptimization一、PostRoute优化的核心功能与默认行为在PostRoute模式下,软件默认执行以下操作(除非手动指定其他目标):违规修复优先级:首先处理寄存器到寄存器(Reg2Reg)路径及寄存器到时钟(Reg2Clock)路径组。其次处理默认路径组的建立时间(Setup)违规和设计规则违规(DRV)。技术流程:RC参数提取:计算布线后的寄生电阻(R)和
- Cadence Design Systems EDA介绍(五)--Innovus
小蘑菇二号
笔记
目录Innovus的主要功能1.初始布局规划(Floorplanning)2.详细布局(Placement)3.布线(Routing)4.时序分析与优化(TimingAnalysisandOptimization)5.功耗分析与优化(PowerAnalysisandOptimization)6.面积优化(AreaOptimization)7.签核(Sign-off)Innovus的特点1.高性能2
- 大模型RLHF强化学习笔记(一):强化学习基础梳理Part1
Gravity!
大模型笔记大模型LLM算法机器学习强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.1Intro定义:强化学习是一种机器学习方法,需要智能体通过与环境交互学习最优策略基本要素:状态(State):智能体在决策过程中需要考虑的所有相关信息(环境描述)动作(Action):在环境中可以采取的行为策略(Policy):定义了在给定状态下智能体应该选择哪个动作,目标是最大化智能体的长期累积奖
- js递归性能优化
啃火龙果的兔子
开发DEMOjavascript开发语言ecmascript
JavaScript递归性能优化递归是编程中强大的技术,但在JavaScript中如果不注意优化可能会导致性能问题甚至栈溢出。以下是几种优化递归性能的方法:1.尾调用优化(TailCallOptimization,TCO)ES6引入了尾调用优化,但只在严格模式下有效:'usestrict';//普通递归functionfactorial(n){if(n===1)return1;returnn*fa
- 相机-IMU联合标定:IMU更新频率
吃水果不削皮
视觉组合导航ROSVIOkalibr
文章目录简介⚠️IMU频率参数错误设置的影响❌相机-IMU联合标定失败:Optimizationfailed!确定IMU更新频率直接通过rostopichz检查实际频率检查IMU驱动或数据手册从bag文件统计频率在这里插入图片描述修改`update_rate`的注意事项**最终建议****常见问题**简介IMU更新频率参数在Kalibr标定中直接影响标定精度和系统性能。高频率的IMU数据能提供更密
- [CVPR 2025] 高效无监督Prompt与偏好对齐驱动的半监督医学分割
alfred_torres
prompt医学图像分割
CVPR2025|优化SAM:高效无监督Prompt与偏好对齐驱动的半监督医学分割论文信息标题:EnhancingSAMwithEfficientPromptingandPreferenceOptimizationforSemi-supervisedMedicalImageSegmentation作者:AishikKonwer,ZhijianYang,ErhanBas,CaoXiao,Pratee
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 深度解析Lucene IndexWriter 性能优化
微笑听雨。
java进阶教程luceneindexWriter全文检索性能调优内存缓冲
深度解析LuceneIndexWriter性能优化目标:在大规模写入、频繁更新的场景下,既保持吞吐量,又兼顾搜索实时性与系统稳定性。关键调优点内存缓冲:将RAMBufferSizeMB提升至128–1024MB,减少flush次数;必要时配合maxBufferedDocs。合并策略:使用TieredMergePolicy,典型参数为maxMergeAtOnce4–8、segmentsPerTier
- [k8s]-疑问:pod重新分配到同样的node上,pullpolicy是always,会存储两份相同的镜像吗?
开门见山,在Kubernetes中,当Pod被重新调度到同一个Node上,并且其容器的imagePullPolicy设置为Always时,通常是不会导致Node上存储两份完全相同的镜像文件。原因在于容器运行时(如Docker,containerd)的镜像层管理机制。imagePullPolicy:Always的行为:这个策略告诉kubelet(Node上的代理),每次启动Pod中的容器之前,必须尝
- 测试框架重试与跳过机制
追逐此刻
面试python
作为测试架构师,针对测试框架中的重试和跳过机制,我将分别设计一个复杂场景及实现逻辑,并提供具体实例说明。一、重试问题:分布式环境下的幂等性验证重试复杂场景:在微服务架构中,当测试用例涉及跨服务的异步操作(如订单支付流程)时,可能出现:服务间通信超时但实际操作已执行最终一致性导致状态延迟需要验证分布式事务的幂等性框架层设计逻辑:classDistributedRetryPolicy:def__ini
- 蚁群算法及其改进——全局路径规划
~夕上林~
优化算法算法
文章目录蚁群算法运行机制公式原理转移概率信息素更新步骤改进精英蚂蚁策略遗传算法+ACO程序参考文献蚁群算法蚁群算法(AntColonyOptimization,ACO)是由意大利学者MarcoDorigo于1992年提出的一种群智能优化算法,其核心思想源于对蚂蚁群体觅食行为的仿生学模拟。通过模拟蚂蚁群体在觅食过程中通过信息素进行间接通信的行为机制,利用正反馈原理动态调整路径选择策略,最终在复杂搜索
- 生成式引擎优化(GEO)来了:品牌如何抢占AI回答的“第一屏”?
随着ChatGPT、Gemini、Claude、文心一言等生成式AI模型的广泛应用,我们获取信息的方式正在发生巨变。搜索不再只是“点进链接”,而是“直接看到答案”。那么问题来了:你的品牌、产品或内容,会不会成为AI回答的一部分?这就是今天我们要聊的重点——GEO:GenerativeEngineOptimization,生成式引擎优化。什么是GEO(生成式引擎优化)?GEO(GenerativeE
- CCS编译器优化
wssjn1994
DSP基础DSP编译器优化
t每个文件都可以设置编译器优化,右键.c文件->属性->optimization->optimizationlevel设置成空的,即可在debug的时候避免出现异常。开编译器优化可能导致跟踪函数的变量时值是错的。编译优化的好处是加快代码运行速度,但缺点就是只能把函数当做黑盒,函数内部的bebug结果是不可靠的。所以一般将算法和流程编到不同的文件中去,因为算法文件一般都是验证完了的,不怎么需要调试,
- 算法导论:动态规划-钢条切割
tttoff
算法动态规划
一、动态规划定义区别于分治法,动态规划(dynamicprogramming)的子问题是有重叠的。常用于最优化问题(optimizationproblem)。二、钢条切割问题2.1步骤分解(1)刻画最优解的结构特征如何得到最大的收益->切割or不切割->则最大收益可以由两个子方案组成,即最大收益=max(不切割的收益,切割的收益)(2)递归地定义最优解的值不切割的收益的已知,则需定义切割的收益。由
- 4.1 FFmpeg编译选项配置
卖猪肉的痴汉
#FFmpeg编译与移植ffmpeg
一、不同场景的编译选项1.1源码调试场景开启debug和禁用strip,防止代码优化,避免源码调试时乱跳。#生成Makefile./configure\--prefix=$(pwd)/../install_mingw\--enable-gpl\--enable-debug=3\--disable-optimizations\--disable-asm\--disable-stripping\--e
- 一文讲透AWS的IAM
忍者算法
aws云计算
理解IAM(IdentityandAccessManagement)里的Policy、User、Role、Group之间的关系,可以用一个通俗的比喻来帮你构建直觉理解:类比:公司大楼的门禁系统想象你是某家公司的IT管理员,需要设置员工进入哪些办公室、能使用哪些设备:User(用户)=公司员工个人每一个User就是一个具体的人,比如“张三”“李四”,他们需要自己的门禁卡来刷卡进门、使用电脑等。AWS
- (02)Cartographer源码无死角解析-(72) 2D后端优化→OptimizationProblem2D-约束残差、landmark残差
江南才尽,年少无知!
机器人cartographerslam自动驾驶增强现实
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:(02)Cartographer源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→
- 从代码学习深度强化学习 - REINFORCE 算法 PyTorch版
飞雪白鹿€
深度强化学习pytorch版pytorchDRL
文章目录前言**一、理论基础:什么是策略梯度?****1.1基于价值vs.基于策略****1.2策略梯度(PolicyGradient)****1.3REINFORCE算法:蒙特卡洛策略梯度****1.4REINFORCE算法流程****二、PyTorch代码实践****2.1环境与辅助函数****2.2核心算法实现****2.3训练与结果****总结**前言欢迎来到“从代码学习深度强化学习”系列
- winrm登录失败,指定的凭据被服务器拒绝
winrm登录失败,指定的凭据被服务器拒绝。异常提示:thespecifiedcredentialswererejectedbytheserver在windowspowershell执行set-executionpolicyremotesignedwinrmquickconfigwinrmsetwinrm/config/service/auth'@{Basic="true"}'winrmsetwi
- Java注解——注解与反射的结合
郝郝郝郝_七
Java基础java开发语言
文章目录一、定义二、类型1.JDK中预定义的注解2.自定义注解3.元注解@Target(ElementType.${param})@Retention(RetentionPolicy.${param})@Document@Inherited三、注解与反射1.获取类上的注解2.获取方法上的注解3.判断判断方法对象是否有该注解,如果有则获取注解对象四、注解与反射结合(实战)1.自定义注解Verify2
- 论文学习——基于双种群进化的不连续和不规则可行域动态约束多目标优化
臭东西的学习笔记
学习
论文题目:Dual-PopulationEvolutionBasedDynamicConstrainedMultiobjectiveOptimizationWithDiscontinuousandIrregularFeasibleRegions基于双种群进化的不连续和不规则可行域动态约束多目标优化(XiaoxuJiang,QingdaChen,Member,IEEE,JinliangDing,Se
- SpringCloud Gateway 处理跨域问题
7柒丶
微服务gatewaycloudspringcloud
为什么会出现跨域问题出于浏览器的同源策略限制。同源策略(Sameoriginpolicy)是一种约定,它是浏览器最核心也最基本的安全功能,如果缺少了同源策略,则浏览器的正常功能可能都会受到影响。可以说Web是构建在同源策略基础之上的,浏览器只是针对同源策略的一种实现。同源策略会阻止一个域的javascript脚本和另外一个域的内容进行交互。所谓同源(即指在同一个域)就是两个页面具有相同的协议(pr
- 什么是跨域?
hweiyu00
技术栈杂谈跨域
跨域是指浏览器在进行网络请求时,因请求的源(协议、域名、端口)与当前页面的源不同而受到的安全限制,这是浏览器基于同源策略(SameOriginPolicy)实施的一种安全机制。以下将从其定义、产生原因、常见场景及解决方案等方面展开详细介绍:一、跨域的定义与同源策略1.同源的定义当两个URL的协议(protocol)、域名(domain)、端口(port)完全相同时,才属于同一个源。例如:同源示例:
- wordpress网站速度慢如何优化
JoySSL证书厂商
网络
WordPress网站优化网页加载速度(speedoptimization)是一个重要的任务,尤其是对于那些希望提高访问体验、减少等待时间的用户。以下是wordpress网站优化网页加载速度的技术要点和具体技巧:一、wordpress网站的基本结构前端:包含HTML、CSS、JavaScript等元素。后端:通常使用Node.js或其他服务器-side语言,负责页面渲染和服务器逻辑。WordPre
- 海马优化算法优化支持向量回归(SVR)模型项目
神经网络15044
仿真模型python算法算法回归数据挖掘
海马优化算法优化支持向量回归(SVR)模型项目一、项目概述本项目将实现海马优化算法(SeahorseOptimizationAlgorithm,SOA)优化支持向量回归(SVR)模型的全过程。海马优化算法是一种新型元启发式算法,模拟海马的智能行为(包括移动、捕食和繁殖),能有效解决复杂优化问题。SVR作为强大的回归模型,其性能高度依赖参数选择(C、ε、γ)。本项目将结合SOA和SVR,在Pytho
- 【速写】policy与reward分词器冲突问题(附XAI阅读推荐)
囚生CY
速写python
TRL的PPOTrainer实现存在一个很严重的问题,它的model和reward_model两个参数所使用的分词器是必须相同的,否则一定会报错。之前已经提过,PPOTrainer要求训练数据(train_dataset参数)必须包含input_ids字段,这个跟SFTTrainer,DPOTrainer,GRPOTrainer都不同,查了一下源码(trl/trainer/ppo_trainer.
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri