【算法练习】leetcode算法题合集之链表篇

链表总结

  1. 增加表头元素
  2. 倒数节点,使用快慢指针
  3. 环形链表(快慢指针)
  4. 合并有序链表,归并排序
  5. LRU缓存

算法题

删除链表元素

删除链表中的节点

LeetCode237. 删除链表中的节点

复制后一个节点的值,删除后面的节点(1->5->3->4,删除5的话,先调整为1->3->3->4,再删除第二个3的节点)

class Solution {
    public void deleteNode(ListNode node) {
        node.val = node.next.val;
        node.next = node.next.next;
    }
}
删除链表的倒数第 N 个结点

LeetCode19. 删除链表的倒数第 N 个结点

快慢节点,使用虚拟节点,删除节点

当fast的next节点到了链表外,slow的next节点是第n个节点。找到slow的next节点,删除。

class Solution_LC19 {
    public ListNode removeNthFromEnd(ListNode head, int n) {
        ListNode dummy = new ListNode(-1);
        dummy.next = head;
        ListNode slow = dummy;
        ListNode fast = dummy;
        for (int i = 0; i < n; i++) {
            fast = fast.next;
        }
        while (fast.next != null) {
            fast = fast.next;
            slow = slow.next;
        }
        slow.next = slow.next.next;
        return dummy.next;
    }

}
删除排序链表中的重复元素

LeetCode83 删除排序链表中的重复元素

和当前节点比较值,相同则删掉,不同则下一个节点

class Solution_LC83 {
    public ListNode deleteDuplicates(ListNode head) {
        ListNode cur = head;
        while (cur != null) {
            int val = cur.val;
            if (cur.next != null && cur.next.val == val) {
                cur.next = cur.next.next;
            } else {
                cur = cur.next;
            }
        }
        return head;
    }
}
删除排序链表中的重复元素 II(**)

LeetCode82. 删除排序链表中的重复元素 II

定义两个节点。cur节点是用来比较的节点,pre节点是用来删除的。找到cur节点,该节点和next节点不一致,pre.next=cur,等于是删除了pre和cur之间的元素。

class Solution {
    public ListNode deleteDuplicates(ListNode head) {
        ListNode dummy = new ListNode(-1);
        dummy.next = head;
        ListNode pre = dummy;
        ListNode cur = head;
        while (cur != null && cur.next != null) {
            int x = cur.val;
            if (cur.next.val == x) {
                while (cur != null && cur.val == x) {
                    cur = cur.next;
                }
                pre.next = cur;
            } else {
                cur = cur.next;
                pre = pre.next;
            }
        }
        return dummy.next;
    }
}

旋转链表

反转链表

LeetCode206. 反转链表

头插法。pre和cur不断向后移动,直到cur为空,pre为最后一个节点(遍历顺序的最后一个)。

class Solution {
    public ListNode reverseList(ListNode head) {
        ListNode pre = null;
        ListNode cur = head;
        while (cur != null) {
            ListNode next = cur.next;
            cur.next = pre;
            pre = cur;
            cur = next;
        }
        return pre;
    }
}
K 个一组翻转链表

LeetCode25. K 个一组翻转链表

  • 获取k个节点一组的链表

  • 翻转链表

  • pre的后面一个节点是start,end的最后一个节点是next。

class Solution {
    public ListNode reverseKGroup(ListNode head, int k) {
        ListNode dummy = new ListNode(-1);
                dummy.next = head;
        ListNode pre = dummy;
        ListNode end = dummy;

        while (end.next != null) {
            for (int i = 0; i < k&&end!=null; i++) {
                end = end.next;

            }
            if (end == null) {
                    break;
                }
            ListNode next = end.next;
            ListNode start = pre.next;
            end.next = null;

            pre.next = reverse(start);

            start.next = next;
            pre = start;
            end = start;
        }
        return dummy.next;
    }

    private ListNode reverse(ListNode head) {
        ListNode pre = null;
        ListNode cur = head;
        while (cur != null) {
            ListNode next = cur.next;
            cur.next = pre;
            pre = cur;
            cur = next;

        }
        return pre;
    }
}
LeetCode61. 旋转链表

LeetCode61. 旋转链表.

  • 获取链表的尾结点

  • 尾结点连接头节点

  • 找到切割点(切割点的前一个节点)

  • 切割。获取next节点,将当前节点的next置为空,切断。

class Solution {
    public ListNode rotateRight(ListNode head, int k) {
        if (k == 0 || head == null || head.next == null) {
            return head;
        }
        ListNode cur = head;
        int n = 1;
        while (cur.next != null) {
            cur = cur.next;
            n++;
        }

        int add = n - k % n;
        if (add == n) {
            return head;
        }
        cur.next = head;
        while (add > 0) {
            cur = cur.next;
            add--;
        }

        ListNode next = cur.next;
        cur.next = null;
        return next;
    }
}

交换链表节点

LeetCode24. 两两交换链表中的节点(⭐️高频)

LeetCode24. 两两交换链表中的节点

定义虚拟头结点

获取可以交换的节点,进行节点操作

将node1节点置为前置结点,进行下一轮操作

class Solution {
    public ListNode swapPairs(ListNode head) {
        ListNode dummy = new ListNode(-1, head);
        ListNode cur = dummy;

        while (cur.next != null && cur.next.next != null) {
            ListNode node1 = cur.next;
            ListNode node2 = node1.next;
            ListNode next = node2.next;
            cur.next = node2;
            node2.next = node1;
            node1.next = next;
            cur = node1;
        }
        return dummy.next;
    }
}

环形/相交/回文链表

LeetCode141. 环形链表(腾讯)

LeetCode141. 环形链表(腾讯)

使用快慢指针,如果快指针最后到达慢指针,则存在环。

public class Solution {
 public boolean hasCycle(ListNode head) {
        ListNode fast = head;
        ListNode slow = head;
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow) {
                return true;
            }
        }
        return false;
    }
}
LeetCode142. 环形链表II

LeetCode142. 环形链表II.

快慢指针

a+b+n(b+c)=2(a+b) --> a=(n-1)(b+c)+c

public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode fast = head;
        ListNode slow = head;
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
            if (slow == fast) {
                ListNode node1 = head;
                ListNode node2 = fast;
                while (node1 != node2) {
                    node1 = node1.next;
                    node2 = node2.next;
                }
                return node1;
            }
        }
        return null;
    }
}
LeetCode160.相交链表

160. 相交链表

要进行临界值判断

相交的链表后面一段是公共的,a+b+c=c+b+a。

public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        if (headA == null || headB == null) {
            return null;
        }
        ListNode p1 = headA;
        ListNode p2 = headB;
        while (p1 != p2) {
            p1 = p1 == null ? headB : p1.next;
            p2 = p2 == null ? headA : p2.next;
        }
        return p1;
    }
}
LeetCode234. 回文链表

234. 回文链表

寻找中间节点,并反转前面列表

pre是反转链表的头结点,slow是后面链表的头结点。比较节点的值,判断是否回文

class Solution {
    public boolean isPalindrome(ListNode head) {
                //1-2-3-2-1
        ListNode fast = head;
        ListNode slow = head;
        ListNode pre = null;
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            ListNode next = slow.next;
            slow.next = pre;
            pre = slow;
            slow = next;
        }
        if (fast != null) {
            slow = slow.next;
        }
        while (pre != null && slow != null) {
            if (slow.val != pre.val) {
                return false;
            } else {
                slow = slow.next;
                pre = pre.next;
            }
        }
        return true;
    
    }
}

链表合并

LeetCode2: 两数相加

LeetCode2: 两数相加

对应数位的值相加,计算当前节点以及向上的值。

class Solution {
    public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
        ListNode dummy = new ListNode(-1);
        ListNode cur = dummy;
        int carry = 0;
        while (l1 != null || l2 != null || carry != 0) {
            int sum = (l1 == null ? 0 : l1.val) + (l2 == null ? 0 : l2.val) + carry;
            carry = sum / 10;
            ListNode tmp = new ListNode(sum % 10);
            cur.next = tmp;
            cur = tmp;
            l1 = l1 == null ? null : l1.next;
            l2 = l2 == null ? null : l2.next;
        }
        return dummy.next;
    }
}
LeetCode445: 两数相加II

LeetCode445: 两数相加II

使用堆栈,用于顺序相反获取值

链表的拼接和上一题不同。上一题是不断往链表后面添加元素;这一题是不断往前面添加元素。

class Solution {
    public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
        Stack<Integer> stack1 = new Stack<>();
        Stack<Integer> stack2 = new Stack<>();
        while (l1 != null) {
            stack1.push(l1.val);
            l1 = l1.next;
        }
        while (l2 != null) {
            stack2.push(l2.val);
            l2 = l2.next;
        }
        int carry = 0;

        ListNode cur = null;
        while (!stack1.isEmpty() || !stack2.isEmpty() || carry != 0) {
            int sum = (stack1.isEmpty() ? 0 : stack1.pop()) + (stack2.isEmpty() ? 0 : stack2.pop()) + carry;
            carry = sum / 10;
            ListNode tmp = new ListNode(sum % 10);
            tmp.next = cur;
            cur = tmp;

        }
        return cur;

    }
}
LeetCode21: 合并两个有序链表

21. 合并两个有序链表

挨个遍历比较大小,是最容易想到的方案

使用递归。当l1.val < l2.vall1.next = mergeTwoLists(l1.next, l2);

class Solution {
    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        ListNode dummy = new ListNode(-1);
        ListNode cur = dummy;
        while (list1 != null && list2 != null) {
            if (list1.val < list2.val) {
                cur.next = new ListNode(list1.val);
                cur = cur.next;
                list1 = list1.next;
            } else {
                cur.next = new ListNode(list2.val);
                cur = cur.next;
                list2 = list2.next;
            }
        }
        if (list1 != null) {
            cur.next = list1;
        } else {
            cur.next = list2;
        }
        return dummy.next;
    }
}
LeetCode23: 合并K个排序链表

23. 合并 K 个升序链表

挨个遍历处理

class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        ListNode ans = null;
        for (int i = 0; i < lists.length; i++) {
             ans =mergeTwoLists(ans, lists[i]);
        }
        return ans;
    }

    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        if (list1 == null || list2 == null) {
            return list1 == null ? list2 : list1;
        }
        ListNode dummy = new ListNode(-1);
        ListNode cur = dummy;
        while (list1 != null && list2 != null) {
            if (list1.val < list2.val) {
                cur.next = new ListNode(list1.val);
                cur = cur.next;
                list1 = list1.next;
            } else {
                cur.next = new ListNode(list2.val);
                cur = cur.next;
                list2 = list2.next;
            }
        }
        if (list1 != null) {
            cur.next = list1;
        } else {
            cur.next = list2;
        }
        return dummy.next;

    }
}

分治合并,将链表数组拆分成2段,处理好后合并。

class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        return merge(lists, 0, lists.length - 1);
    }

    private ListNode merge(ListNode[] lists, int l, int r) {

        if (l == r) {
            return lists[l];
        }
        if (l > r) {
            return null;
        }
        int mid = (l + r) / 2;
        return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));

    }

    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        if (list1 == null || list2 == null) {
            return list1 == null ? list2 : list1;
        }
        ListNode dummy = new ListNode(-1);
        ListNode cur = dummy;
        while (list1 != null && list2 != null) {
            if (list1.val < list2.val) {
                cur.next = new ListNode(list1.val);
                cur = cur.next;
                list1 = list1.next;
            } else {
                cur.next = new ListNode(list2.val);
                cur = cur.next;
                list2 = list2.next;
            }
        }
        if (list1 != null) {
            cur.next = list1;
        } else {
            cur.next = list2;
        }
        return dummy.next;

    }
}

使用优先队列

class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        //优先队列默认是小顶堆,最小的元素放在队头,即a-b
        PriorityQueue<ListNode> priorityQueue = new PriorityQueue<ListNode>((a, b) -> {
            return a.val - b.val;
        });

        for (int i = 0; i < lists.length; i++) {
            if(lists[i]!=null){
priorityQueue.add(lists[i]);
            }
            
        }
        ListNode dummy = new ListNode(-1);
        ListNode cur = dummy;
        while (!priorityQueue.isEmpty()) {
            ListNode listNode = priorityQueue.poll();
            ListNode next = listNode.next;
            cur.next = listNode;
            cur = listNode;
            if (next != null) {
                priorityQueue.add(next);
            }
        }

        return dummy.next;

    }
}
LeetCode148: 排序链表

148. 排序链表

使用优先队列,最简单。

使用归并排序。做链表拆分。

可以和回文链表做比较,必须熟悉掌握两个链表合并的逻辑。

class Solution {
    public ListNode sortList(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }
        ListNode fast = head.next;
        ListNode slow = head;
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
        }
        ListNode next = slow.next;
        slow.next = null;
        ListNode listNode1 = sortList(head);
        ListNode listNode2 = sortList(next);
        ListNode dummy = new ListNode(-1);
        ListNode cur =dummy;
        while (listNode1 != null && listNode2 != null) {
            if (listNode1.val < listNode2.val) {
                cur.next = listNode1;
                cur = cur.next;
                listNode1 = listNode1.next;
            } else {
                cur.next = listNode2;
                cur = cur.next;
                listNode2 = listNode2.next;
            }

        }
        cur.next = listNode1 == null ? listNode2 : listNode1;
        return dummy.next;
    }
}

LRU缓存

LeetCode146. LRU 缓存

146. LRU 缓存

使用LinkedHashMap,设置accessOrder为true,最近访问的元素会排在最后。而removeEldestEntry当条件满足的时候会移除最老的元素。

class LRUCache extends LinkedHashMap<Integer, Integer> {

    private int capacity;

    public LRUCache(int capacity) {
        super(capacity, 0.75f, true);
        this.capacity = capacity;
    }

    public int get(int key) {
        return super.getOrDefault(key, -1);
    }

    public void put(int key, int value) {
        super.put(key, value);
    }

    protected boolean removeEldestEntry(Map.Entry<Integer, Integer> entry) {
        return size() > this.capacity;
    }
}

使用Hash表和双向链表

双向链表记录访问顺序,Hash表获取元素

获取元素,将元素放在最前(移除当前元素在双向链表中的原位置,放在前面)。

存放元素,如果元素已存在,进行更新值,且将元素放在最前;如果元素不存在,添加元素要判断边界,超过边界要移除最早访问的元素(从链表和Hash表中移除)。

class LRUCache extends LinkedHashMap<Integer, Integer> {

    public class DLinkedNode {
        int key;
        int val;
        DLinkedNode prev;
        DLinkedNode next;

        public DLinkedNode() {
        }

        public DLinkedNode(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }

    private Map<Integer, DLinkedNode> map = new HashMap<>();

    private int size;

    private int capacity;

    private DLinkedNode head, tail;


    public LRUCache(int capacity) {
        this.capacity = capacity;
        size = 0;
        head = new DLinkedNode();
        tail = new DLinkedNode();
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        DLinkedNode dLinkedNode = map.get(key);
        if (dLinkedNode == null) {
            return -1;
        } else {
            moveToHead(dLinkedNode);
            return dLinkedNode.val;
        }
    }

    private void moveToHead(DLinkedNode node) {
        removeNode(node);
        addToHead(node);

    }

    private void addToHead(DLinkedNode node) {
        DLinkedNode next = head.next;
        head.next = node;
        node.prev = head;
        node.next = next;
        next.prev = node;
    }

    private void removeNode(DLinkedNode node) {
        DLinkedNode prev = node.prev;
        DLinkedNode next = node.next;
        prev.next = next;
        next.prev = prev;
    }

    private DLinkedNode removeTail() {
        DLinkedNode prev = tail.prev;
        removeNode(prev);
        return prev;
    }

    public void put(int key, int value) {
        DLinkedNode node = map.get(key);
        if (node == null) {
            DLinkedNode newNode = new DLinkedNode(key, value);

            map.put(key, newNode);
            addToHead(newNode);
            size++;
            if (size > capacity) {
                DLinkedNode tail = removeTail();
                map.remove(tail.key);
                size--;
            }
        } else {

            node.val = value;
            moveToHead(node);
        }
    }
}

你可能感兴趣的:(算法,算法,链表,数据结构)