- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- [pytorch] pytorch_model.bin 和 training_args.bin 的区别
心心喵
pytorch深度学习pytorch神经网络
pytorch_model.bin和training_args.bin是与PyTorch框架和训练过程相关的两个文件。pytorch_model.bin:这是保存了PyTorch模型的二进制文件。在使用PyTorch进行深度学习训练时,经过训练的模型会被保存为这个文件,其中包含了模型的权重参数。这个文件可以被加载到PyTorch中,以便进行推理、评估或继续训练。training_args.bin:
- 【2025最新】AI大模型项目实战教程大揭秘!超详细攻略,手把手带你飞,记得收藏!
大模型教程
人工智能产品经理大模型大模型教程大数据大模型学习程序员
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- 基于django+Spark+大数据+爬虫技术的国漫推荐与可视化平台设计和实现(源码+论文+部署讲解等)
阿勇学长
大数据项目实战案例Java精品毕业设计实例Python数据可视化项目案例大数据djangospark国漫推荐与可视化平台毕业设计Java
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
昵称是6硬币
(持续更新)YOLO深度学习计算机视觉人工智能目标检测图像处理
YOLOv11:ANOVERVIEWOFTHEKEYARCHITECTURALENHANCEMENTS目标检测论文精读(逐段解析)论文地址:https://www.arxiv.org/abs/2410.17725RahimaKhanamandMuhammadHussainUltralytics公司发布CVPR2024论文写的比较简单,比较核心的改进包括:C3K2高效特征提取机制。对C2f模块的改进
- DiNA:扩张邻域注意力 Transformer
AI专题精讲
Paper阅读transformer人工智能
摘要Transformer正迅速成为跨模态、跨领域和跨任务中应用最广泛的深度学习架构之一。在计算机视觉领域,除了持续发展的纯transformer架构,分层transformer也因其优越的性能和在现有框架中易于集成而受到广泛关注。这类模型通常采用局部化的注意力机制,如滑动窗口的NeighborhoodAttention(NA)或SwinTransformer的ShiftedWindowSelfA
- 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)深度学习人工智能
神经网络的普适逼近定理(UniversalApproximationTheorem,UAT)是理解为什么神经网络如此强大和灵活的理论基石之一。它为我们提供了信心,即在某些条件下,一个相对简单的神经网络结构原则上能够模拟出几乎任何复杂的函数。这个定理在深度学习领域中经常被提及,尤其是在讨论模型表达能力的时候。普适逼近定理(UniversalApproximationTheorem)概述普适逼近定理的
- 使用SQL-Ollama与自然语言交互SQL数据库的指南
antja_
数据库sql
#使用SQL-Ollama与自然语言交互SQL数据库的指南##技术背景介绍随着人工智能技术的发展,能够使用自然语言与SQL数据库交互的需求越来越大。这种技术可以帮助用户轻松访问和操作数据库,而无需深刻理解SQL语法。SQL-Ollama是一个专门设计的模板,利用Zephyr-7b模型,通过Ollama在本地运行推理,使这一过程变得简单而高效。##核心原理解析SQL-Ollama通过将自然语言转换为
- 倾向得分匹配的stata命令_R语言系列1:倾向得分匹配
weixin_39995108
倾向得分匹配的stata命令
1PSM简介倾向评分匹配(PropensityScoreMatching,简称PSM)是一种统计学方法,用于处理观察研究(ObservationalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最早由PaulRosen
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- MCP+A2A:从实验室到生产环境的落地之旅
CarlowZJ
AI应用落地+MCP+A2A数据库MCP+A2A
目录摘要一、引言二、MCP与A2A概念讲解(一)MCP(ModelContextProtocol)(二)A2A(Application-to-Application)(三)MCP与A2A的融合三、MCP+A2A技术架构图与工作流程图(一)整体架构图(二)工作流程图四、MCP+A2A代码示例(一)基于Python的MCP+A2A通信示例(二)基于Java的MCP+A2A应用集成示例五、MCP+A2A
- 文心大模型4.5及X1重磅上线,真实测评
2025年3月16日,人工智能领域迎来一场重要盛事——百度文心大模型4.5如期正式发布。与此同时,百度还惊喜推出了另一款全新模型——文心大模型X1。目前,文心大模型4.5和X1已在文心一言官网(https://yiyan.baidu.com/)正式上线,并免费向用户开放。其中,文心大模型4.5面向企业用户和开发者,用户可以通过登录百度智能云千帆大模型平台,轻松调用文心大模型4.5的API接口,快速
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- python系列教程246——多态
人工智能AI技术
python系列教程python开发语言
朋友们,如需转载请标明出处:https://blog.csdn.net/jiangjunshow声明:在人工智能技术教学期间,不少学生向我提一些python相关的问题,所以为了让同学们掌握更多扩展知识更好地理解AI技术,我让助理负责分享这套python系列教程,希望能帮到大家!由于这套python教程不是由我所写(有时候有空也会参与编写),所以不如我的人工智能教程风趣幽默,学起来比较枯燥;但它的知
- 多模态大语言模型arxiv论文略读(145)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记论文阅读
ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文标题:ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文作者:MikołajMałkiński,SzymonPawlo
- 多模态大语言模型arxiv论文略读(138)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记深度学习
UnderstandingtheRoleofLLMsinMultimodalEvaluationBenchmarks➡️论文标题:UnderstandingtheRoleofLLMsinMultimodalEvaluationBenchmarks➡️论文作者:BotianJiang,LeiLi,XiaonanLi,ZhaoweiLi,XiachongFeng,LingpengKong,QiLiu,
- Python 解析 AI 在能源管理与智能电网中的应用
头发在线失联
python人工智能开发语言
```htmlPython解析AI在能源管理与智能电网中的应用Python解析AI在能源管理与智能电网中的应用随着全球对可持续发展的重视和能源需求的不断增长,能源管理与智能电网技术正在成为研究和实践的重要领域。在这个背景下,人工智能(AI)作为一项前沿技术,正被广泛应用于能源管理与智能电网中,以提高效率、优化资源分配并减少环境影响。本文将探讨Python如何在这一领域中发挥作用,并解析其具体应用场
- 多模态大语言模型arxiv论文略读(140)
SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-TunedInstructionGeneration➡️论文标题:SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-T
- 如何实现聊天模型响应流式处理
yunwu12777
langchain
在现代人工智能应用中,流式处理聊天模型的响应成为一种常见需求,特别是在需要实时输出或大规模处理时。本文将详细介绍如何在Python中实现聊天模型的同步和异步流式处理,使用langchain库中提供的ChatAnthropic模型作为示例。技术背景介绍流式处理是指从模型逐步获取输出,而不是等待整个输出完成。这对于处理长文本生成或需要动态响应的应用场景特别有用。langchain库中的聊天模型实现了R
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- 【STM32】USART串口协议&串口外设
对error说不
stm32嵌入式硬件单片机
✅作者简介:热爱科研的嵌入式开发者,修心和技术同步精进❤欢迎关注我的知乎:对error视而不见代码获取、问题探讨及文章转载可私信。☁愿你的生命中有够多的云翳,来造就一个美丽的黄昏。获取更多嵌入式资料可点击链接进群领取,谢谢支持!点击领取更多详细资料一、引言在嵌入式系统开发里,设备间的通信是关键环节。串口通信由于其实现简单、成本低廉等特性,被广泛应用于各类设备之间的数据传输。STM32系列微控制器具
- AI人工智能助力空间智能领域提升运营效率
AI智能探索者
AIAgent智能体开发实战人工智能网络ai
AI人工智能助力空间智能领域提升运营效率关键词:AI人工智能、空间智能领域、运营效率、智能算法、数据驱动摘要:本文聚焦于AI人工智能在空间智能领域的应用,旨在探讨其如何助力该领域提升运营效率。首先介绍了空间智能领域的背景和相关概念,阐述了AI在其中的核心作用和原理。接着详细讲解了相关核心算法,并结合数学模型进行分析。通过项目实战案例展示了AI在空间智能领域的具体应用和实现方式。同时探讨了实际应用场
- 人工智能的发展历程与未来展望
唐骁虎
ai
人工智能的发展历程与未来展望一、人工智能的起源与早期发展1.1人工智能的定义与概念起源人工智能(AI)的定义与概念起源可追溯至20世纪中叶,当时一群具有远见的科学家和工程师开始探索机器是否能够模拟人类智能行为。1956年,在达特茅斯会议上,约翰·麦卡锡首次提出了“人工智能”这一术语,标志着该领域的正式诞生。AI的定义涉及创建能够执行需要人类智能的任务的机器,如视觉感知、语音识别、决策和语言翻译等。
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- 如何让人工智能使你的工作效率一日千里
南风过闲庭
人工智能aipython
1.自动化重复性任务1.1识别并自动化日常任务提高工作效率的首要步骤是识别日常工作中重复性高且耗时的任务。根据麦肯锡全球研究院的报告,知识工作者大约有40%的时间花费在此类任务上。通过自动化这些任务,员工可以将更多时间投入到需要创造性思维和复杂决策的工作上。数据支持:一项针对500名知识工作者的调查显示,通过自动化日常任务,平均每天可以节省2小时的工作时间。这些任务包括数据录入、文件整理、邮件分类
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- RoomGPT: 人工智能驱动的室内设计革命
m0_56734068
人工智能
RoomGPT:用AI重新定义室内设计在当今数字化时代,人工智能正在改变各个行业的面貌,室内设计领域也不例外。RoomGPT作为一款革命性的AI驱动室内设计工具,正在彻底改变人们对室内空间进行创意和改造的方式。本文将深入探讨RoomGPT的工作原理、使用方法以及它为室内设计行业带来的变革。RoomGPT简介RoomGPT是一个开源项目,由GitHub用户Nutlope开发。它允许用户上传任何房间的
- [插电式混合动力车辆][交替方向乘子法(ADMM)结合CVX]插电式混合动力车辆的能源管理:基于凸优化算法用于模型预测控制MPC研究(Matlab代码实现)
程序辅导帮
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时
- 记录一个异常检测库
STO检测王
深度学习
https://github.com/openvinotoolkit/anomalib/tree/main关于一个异常检测库,包括最先进的算法和功能,如实验管理,超参数优化和边缘推理。
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。