ClickHouse(21)ClickHouse集成Kafka表引擎详细解析

文章目录

  • Kafka表集成引擎
    • 配置
      • Kerberos 支持
    • 虚拟列
  • 资料分享
  • 参考文章

Kafka表集成引擎

此引擎与Apache Kafka结合使用。

Kafka 特性:

  • 发布或者订阅数据流。
  • 容错存储机制。
  • 处理流数据。

老版Kafka集成表引擎参数格式:

Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
      [, kafka_row_delimiter, kafka_schema, kafka_num_consumers])

新版Kafka集成表引擎参数格式:

Kafka SETTINGS
  kafka_broker_list = 'localhost:9092',
  kafka_topic_list = 'topic1,topic2',
  kafka_group_name = 'group1',
  kafka_format = 'JSONEachRow',
  kafka_row_delimiter = '\n',
  kafka_schema = '',
  kafka_num_consumers = 2

必要参数:

  • kafka_broker_list – 以逗号分隔的 brokers 列表 (localhost:9092)。
  • kafka_topic_list – topic 列表 (my_topic)。
  • kafka_group_name – Kafka 消费组名称 (group1)。如果不希望消息在集群中重复,请在每个分片中使用相同的组名。
  • kafka_format – 消息体格式。使用与 SQL 部分的 FORMAT 函数相同表示方法,例如 JSONEachRow

可选参数:

  • kafka_row_delimiter - 每个消息体(记录)之间的分隔符。
  • kafka_schema – 如果解析格式需要一个 schema 时,此参数必填。
  • kafka_num_consumers – 单个表的消费者数量。默认值是:1,如果一个消费者的吞吐量不足,则指定更多的消费者。消费者的总数不应该超过 topic 中分区的数量,因为每个分区只能分配一个消费者。

ClickHouse可以接受和返回各种格式的数据。受支持的输入格式可用于提交给INSERT语句、从文件表(File,URL,HDFS或者外部目录)执行SELECT语句,受支持的输出格式可用于格式化SELECT语句的返回结果,或者通过INSERT写入到文件表。

以下kafka_format是支持的格式,ClickHouse可以接受和返回各种格式的数据。受支持的输入格式可用于提交给INSERT语句、从文件表(File,URL,HDFS或者外部目录)执行SELECT语句,受支持的输出格式可用于格式化SELECT语句的返回结果,或者通过INSERT写入到文件表。

格式 输入 输出
[TabSeparated]
[TabSeparatedRaw]
[TabSeparatedWithNames]
[TabSeparatedWithNamesAndTypes]
[Template]
[TemplateIgnoreSpaces]
[CSV]
[CSVWithNames]
[CustomSeparated]
[Values]
[Vertical]
[JSON]
[JSONAsString]
[JSONStrings]
[JSONCompact]
[JSONCompactStrings]
[JSONEachRow]
[JSONEachRowWithProgress]
[JSONStringsEachRow]
[JSONStringsEachRowWithProgress]
[JSONCompactEachRow]
[JSONCompactEachRowWithNamesAndTypes]
[JSONCompactStringsEachRow]
[JSONCompactStringsEachRowWithNamesAndTypes]
[TSKV]
[Pretty]
[PrettyCompact]
[PrettyCompactMonoBlock]
[PrettyNoEscapes]
[PrettySpace]
[Protobuf]
[ProtobufSingle]
[Avro]
[AvroConfluent]
[Parquet]
[Arrow]
[ArrowStream]
[ORC]
[RowBinary]
[RowBinaryWithNamesAndTypes]
[Native]
[Null]
[XML]
[CapnProto]
[LineAsString]
[Regexp]
[RawBLOB]

示例:

  CREATE TABLE queue (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');

  SELECT * FROM queue LIMIT 5;

  CREATE TABLE queue2 (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
                            kafka_topic_list = 'topic',
                            kafka_group_name = 'group1',
                            kafka_format = 'JSONEachRow',
                            kafka_num_consumers = 4;

  CREATE TABLE queue2 (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
              SETTINGS kafka_format = 'JSONEachRow',
                       kafka_num_consumers = 4;

消费的消息会被自动追踪,因此每个消息在不同的消费组里只会记录一次。如果希望获得两次数据,则使用另一个组名创建副本。

消费组可以灵活配置并且在集群之间同步。例如,如果群集中有10个主题和5个表副本,则每个副本将获得2个主题。 如果副本数量发生变化,主题将自动在副本中重新分配。

SELECT 查询对于读取消息并不是很有用(调试除外),因为每条消息只能被读取一次。使用物化视图创建实时线程更实用。您可以这样做:

  1. 使用引擎创建一个 Kafka 消费者并作为一条数据流。
  2. 创建一个结构表。
  3. 创建物化视图,改视图会在后台转换引擎中的数据并将其放入之前创建的表中。

MATERIALIZED VIEW 添加至引擎,它将会在后台收集数据。可以持续不断地从 Kafka 收集数据并通过 SELECT 将数据转换为所需要的格式。

示例:

  CREATE TABLE queue (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');

  CREATE TABLE daily (
    day Date,
    level String,
    total UInt64
  ) ENGINE = SummingMergeTree(day, (day, level), 8192);

  CREATE MATERIALIZED VIEW consumer TO daily
    AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
    FROM queue GROUP BY day, level;

  SELECT level, sum(total) FROM daily GROUP BY level;

为了提高性能,接受的消息被分组为max_insert_block_size大小的块。如果未在stream_flush_interval_ms毫秒内形成块,则不关心块的完整性,都会将数据刷新到表中。

停止接收主题数据或更改转换逻辑,请 detach 物化视图:

  DETACH TABLE consumer;
  ATTACH TABLE consumer;

如果使用 ALTER 更改目标表,为了避免目标表与视图中的数据之间存在差异,推荐停止物化视图。

配置

GraphiteMergeTree 类似,Kafka 引擎支持使用ClickHouse配置文件进行扩展配置。可以使用两个配置键:全局 (kafka) 和 主题级别 (kafka_*)。首先应用全局配置,然后应用主题级配置(如果存在)。

  
  <kafka>
    <debug>cgrpdebug>
    <auto_offset_reset>smallestauto_offset_reset>
  kafka>

  
  <kafka_logs>
    <retry_backoff_ms>250retry_backoff_ms>
    <fetch_min_bytes>100000fetch_min_bytes>
  kafka_logs>

ClickHouse配置中使用下划线 (_) ,并不是使用点 (.)。例如,check.crcs=true 将是 true

Kerberos 支持

对于使用了kerberos的kafka, 将security_protocol 设置为sasl_plaintext就够了,如果kerberos的ticket是由操作系统获取和缓存的。
clickhouse也支持自己使用keyfile的方式来维护kerbros的凭证。配置sasl_kerberos_service_name、sasl_kerberos_keytab、sasl_kerberos_principal三个子元素就可以。

示例:

  
  <kafka>
    <security_protocol>SASL_PLAINTEXTsecurity_protocol>
    <sasl_kerberos_keytab>/home/kafkauser/kafkauser.keytabsasl_kerberos_keytab>
    <sasl_kerberos_principal>kafkauser/[email protected]sasl_kerberos_principal>
  kafka>

虚拟列

  • _topic – Kafka 主题。
  • _key – 信息的键。
  • _offset – 消息的偏移量。
  • _timestamp – 消息的时间戳。
  • _timestamp_ms – 消息的时间戳(毫秒)。
  • _partition – Kafka 主题的分区。

资料分享

ClickHouse经典中文文档分享

参考文章

  • ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景
  • ClickHouse(02)ClickHouse架构设计介绍概述与ClickHouse数据分片设计
  • ClickHouse(03)ClickHouse怎么安装和部署
  • ClickHouse(04)如何搭建ClickHouse集群
  • ClickHouse(05)ClickHouse数据类型详解
  • ClickHouse(06)ClickHouse建表语句DDL详细解析
  • ClickHouse(07)ClickHouse数据库引擎解析
  • ClickHouse(08)ClickHouse表引擎概况
  • ClickHouse(09)ClickHouse合并树MergeTree家族表引擎之MergeTree详细解析
  • ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析
  • ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析
  • ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析
  • ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析
  • ClickHouse(14)ClickHouse合并树MergeTree家族表引擎之VersionedCollapsingMergeTree详细解析
  • ClickHouse(15)ClickHouse合并树MergeTree家族表引擎之GraphiteMergeTree详细解析
  • ClickHouse(16)ClickHouse日志引擎Log详细解析
  • ClickHouse(17)ClickHouse集成JDBC表引擎详细解析
  • ClickHouse(18)ClickHouse集成ODBC表引擎详细解析
  • ClickHouse(19)ClickHouse集成Hive表引擎详细解析
  • ClickHouse(20)ClickHouse集成PostgreSQL表引擎详细解析

你可能感兴趣的:(ClickHouse入门与实战,clickhouse,kafka,大数据,数据库,数据仓库,etl)