【模型评估 07】过拟合与欠拟合

在模型评估与调整的过程中,我们往往会遇到“过拟合”或“欠拟合”的情况。如何有效地识别“过拟合”和“欠拟合”现象,并有针对性地进行模型调整,是不断改进机器学习模型的关键。特别是在实际项目中,采用多种方法、从多个角度降低“过拟合”和“欠拟合”的风险是算法工程师应当具备的领域知识。

1.在模型评估过程中,过拟合和欠拟合具体是指什么现象?

  • 过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现很好,但在测试集和新数据上的表现较差。
  • 欠拟合指的是模型在训练和预测时表现都不好的情况。

图2.5形象地描述了过拟合和欠拟合的区别。

【模型评估 07】过拟合与欠拟合_第1张图片

可以看出

  • 图2.5(a)是欠拟合的情况,拟合的黄线没有很好地捕捉到数据的特征,不能够很好地拟合数据。
  • 图2.5(c)则是过拟合的情况,模型过于复杂,把噪声数据的特征也学习到模型中,导致模型泛化能力下降,在后期应用过程中很容易输出错误的预测结果。

2.能否说出几种降低过拟合和欠拟合风险的方法?

  • 降低“过拟合”风险的方法

 (1)从数据入手,获得更多的训练数据。使用更多的训练数据是解决过拟合问题最有效的途径手段,因为更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响。当然,直接增加实验数据一般是很困难的,但是可以通过一定的规则来扩充训练数据。比如在图像分类的问题上,可以通过图像的平移、旋转、缩放等方式扩充数据;更进一步地,可以使用生成式对抗网络来合成大量的新训练数据。

(2)降低模型复杂度。在数据较少时,模型过于复杂是产生过拟合的主要因素,适当降低模型复杂度可以避免模型拟合过多的采样噪声。例如在神经网络模型中减少网络层数、神经元个数等;在决策树模型中降低树的深度、进行剪枝等。

(3)正则化方法。给模型的参数加上一定的正则约束,比如将权值的大小加入到损失函数中。以L2正则化为例:

C=C_0+\frac{\lambda}{2n}\cdot \sum\limits_{i}w_i^2

这样,在优化原来的目标函数C0的同时,也能避免权值过大带来的过拟合风险。

(4)集成学习方法。集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险,如Bagging方法。

  •  降低“欠拟合”风险的方法

(1)添加新特征。当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通过挖掘“上下文特征” “ID类特征” “组合特征”等新的特征,往往能够取得更好的效果。在深度学习潮流中,有很多模型可以帮助完成特征工程,如因子分解机、梯度提升决策树、Deep-crossing等都可以成为丰富特征的方法。

(2)增加模型复杂度。简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元个数等。

(3)减小正则化系数。正则化是用来防止过拟合的,担当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。

你可能感兴趣的:(机器学习,人工智能,机器学习)