[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers

论文网址:[2312.14939] Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers (arxiv.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

又见面了 Prof Kim

目录

1. 省流版

1.1. 心得

1.2. 论文框架图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Main Contribution

2.3.1. Defining the Connectome Embedding

2.3.2. TENET: Temporal Neural Transformer

2.4. Experiments

2.4.1. Dataset and Experimental Setup

2.4.2. Comparative Experiment

2.4.3. Ablation Study

2.5. Conclusion

3. Reference List


1. 省流版

1.1. 心得

(1)都2023年了为啥开篇还在说“迄今为止的研究都低估了功能连接的时间动态”,好像还行吧我感觉读了几篇动态的了

(2)⭐五万!!!??个!?样本!!?

(3)⭐这是一个好问题,以至于我真的没有发现。FC随着时间改变有什么意义?为什么会改变?它应该是像血液循环或者呼吸那样有个周期吗,还是说有别的什么意思?为什么迄今为止没有人分析过这个呢?

(4)四页!

1.2. 论文框架图

[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers_第1张图片

2. 论文逐段精读

2.1. Abstract

        ①Previous works did not put dynamic character in a important position

        ②⭐The authors aim to learn dynamic functional connectivity (FC) by graph transformers (GTs)

        ③⭐They use over 50,000 rs-fMRI data from 3 datasets, which is the largest number in relevant researches so far

        ④Tasks: sex classification and age regression

2.2. Introduction

        ①When deal FC with GNN, the data might be over smoothing or over squashing. Besides, rich connectivity details can also be lost

        ②Node and edge embedding is still a challenge in GTs

        ③Large scale data can probably enhance the replicability

        ④⭐Exsting works do not reveal the nature of why FC will changes with time

2.3. Main Contribution

2.3.1. Defining the Connectome Embedding

        ①Get time series matrix P in time T_{max}

        ②Encoding dynamic FC with original position, structure and time by sliding window and GRU based methods

        ③The edge weight:

(R_{t})_{ij}=\frac{\mathrm{Cov}((\bar{p}_{t})_{i},(\bar{p}_{t})_{j})}{\sigma_{(\bar{p}_{t})i}\sigma_{(\bar{p}_{t})_{j}}}\in\mathbb{R}^{N\times N}

where \bar{P}_t is a windowed matrix from \Gamma window length and stride S in time t

        ④Reduce identity matrix from R_t to ensure there is no self-loop. Then combine it with another identity matrix:

G:=[R_{t}-I\mid I]\in\mathbb{R}^{N\times2N}

put G to two MLP layers then get a N\times D dimensional input

        ⑤Time embedding \eta(t)\in\mathbb{R}^{D} is the GRU output (?). Combine the two will get a final connectome embedding:

\boldsymbol{X}_{t}=[\operatorname{MLP}(\boldsymbol{G})|\eta(t)]\in\mathbb{R}^{(N+1)\times D}

        ⑥They effectively capture the one-hop connectivity information

        ⑦Connectome embedding method:

[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers_第2张图片

2.3.2. TENET: Temporal Neural Transformer

        ①The framework of TENET with two parts:

[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers_第3张图片

they firstly transform g:(\boldsymbol{X}_{1},\boldsymbol{X}_{2},...,\boldsymbol{X}_{T})\rightarrow(\boldsymbol{h}_{1},\boldsymbol{h}_{2},...,\boldsymbol{h}_{T}) then excute h:(\boldsymbol{h_{1}},\boldsymbol{h_{2}},...,\boldsymbol{h_{T}})\rightarrow\boldsymbol{h_{\mathrm{dyn}}} as f=h\circ g, where \boldsymbol{h_{t}} is a self attended connectome feature vecture at time tg aims to capture spatial features and h aims to learn temporal self-attention.

        ②The attention function:

\mathrm{attention}(\boldsymbol{H})=\mathrm{softmax}\Big(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{D}}\Big)\boldsymbol{V},\quad\\\boldsymbol{K}=\boldsymbol{W}_\mathrm{key}\boldsymbol{H},\boldsymbol{Q}=\boldsymbol{W}_\mathrm{query}\boldsymbol{H},\boldsymbol{V}=\boldsymbol{W}_\mathrm{value}\boldsymbol{H}

where D is the hidden dimension

        ③MHSA means self-attention parallelly projected with the multiple number of heads

        ④Combine operator: \mathbf{Z}_{t}^{l}=\mathrm{concatenate}(\{\mathrm{attention}(\boldsymbol{H}_{t}^{l}),\boldsymbol{\bar{R}}_{t},\Sigma^{i}(\boldsymbol{\bar{R}}_{t})_{ij}\})

        ⑤Left MLP layer: H_{t}^{l+1}=\mathrm{MLP}(\boldsymbol{Z}_{t}^{l}) and the first layer is H_{t}^{0}:=[X_{t}\|h_{\mathrm{token}}]

        ⑥The detailed pseudo code of TENET(正文放在附录,但是只有一个附录我就把它提到正文了):

[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers_第4张图片

culminate  vi.达到顶点;(以某种结果)告终;(在某一点)结束

2.4. Experiments

2.4.1. Dataset and Experimental Setup

        ①Datasets: UK Biobank (UKB), Adolescent Brain Cognitive Development (ABCD) (they choose ABCD-HCP pipeline 2 for unpreprocessed data) and Human Connectome Project (HCP) with different preprocessing

        ②Atlas: Schaefer with 400 ROIs

        ③Layer of model: 4

        ④Number of hidden dimension in each layer: 1024

        ⑤Optimizer: Adam

        ⑥Search the best batch size by grid search in {2, 4, 6, 8, 10}

        ⑦Search the best learning rate by grid search in {5e-4, 1e-5, 5e-6, 1e-6, 5e-7, 1e-7}

        ⑧Cross vadilation: 5 fold

        ⑨Epoch: 15 for ABCD and UKB, 30 for HCP

2.4.2. Comparative Experiment

        ①Comparison table:

[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers_第5张图片

(他这个不是精度我现在不能用脑子检索出别的文章的AUR导致我不太能现在给出比较结论)

2.4.3. Ablation Study

        ①They remove GRU and change dynamic embedding to static respectively:

        ②Test of hidden size and layers:

[论文精读]Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers_第6张图片

2.5. Conclusion

        Their TENET provide valuable interpretability

3. Reference List

Kim B. et al. (2023) 'Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers', NeurIPS. doi: https://doi.org/10.48550/arXiv.2312.14939

你可能感兴趣的:(论文精读,人工智能,深度学习,机器学习,计算机视觉,学习,分类,笔记)