主要写了SDRAM的初始化模块,注重文档信息的查找,时序图的设计,SDRAM仿真插件的使用。
根据文档说明,SDRAM在使用之前必须先进行初始化
初始化之前要进行100us的延迟,在100us内除了INHIBIT和NOP命令,其他命令都不可以执行,
时序图如下:
CLK为系统时钟,根据时序图,在100us的延迟后执行precharge命令,在经过trp时间后进行auto refresh命令 ,经过trc时间后再执行一次auto refresh,再经过trc时间后惊醒寄存器配置命令mode register,到此初始化完成。
阅读手册:
发现Nop模式下 cs_n.ras_n,cas_n.we_n的数据分别为0111/1xxx,同理precharge为0010,auto_ref为0001,
trc的最小时间间隔为63ns,4个周期(80ns——50hz/20ns),
trp的最小时间间隔为20ns,1个周期
配置模式寄存器:选择配置 A0-A11 分别为0100_0110_0000
为了稳定设置延迟时间为200us,200us后flag200us拉高,命令计数器cnt_cmd开始计数(计时钟周期数),一开始进行precharge(周期0),进行autoref命令(周期1,5),进行mest(周期9)命令。初始化完成。
cmd_reg:用来进行命令的寄存,当cmd_cnt计数到相应周期的时候写入相应的配置。
sdram_addr:选择地址A0-A11
flag_init_end:当初始化任务完成后拉高点评,标志此时初始化完成
module sdram_init(
input sclk,
input srst,
output reg [3:0] cmd_reg, //片选信号
output wire [11:0] sdram_addr, //A0-A11
output wire flag_init_end
);
//==========================================================
//======= define parameter and internal signal ========
//==========================================================
localparam delay_200us = 10000;
// sdram command
localparam nop = 4'b0111;
localparam pre = 4'b0010;
localparam aref = 4'b0001;
localparam mest = 4'b0000;
reg [13:0] cnt_200us ;
wire flag_200us ;
reg [3:0] cnt_cmd ;
//==========================================================
//==================== main code ====================
//==========================================================
// cnt_200us
always@(posedge sclk or negedge srst) begin
if(srst == 1'b0)
cnt_200us <= 'd0;
else if(flag_200us == 1'b0)
cnt_200us <= cnt_200us + 1'b1;
end
//cnt_cmd
always@(posedge sclk or negedge srst) begin
if(srst == 1'b0)
cnt_cmd <= 'd0;
else if(flag_200us == 1'b1 && flag_init_end == 1'b0)
cnt_cmd <= cnt_cmd + 1'b1; //最后不需要归零,保持下去也可
end
//cmd_reg
always@(posedge sclk or negedge srst) begin
if(srst == 1'b0)
cmd_reg <= nop ;
else if(flag_200us == 1'b1)
case(cnt_cmd)
0: cmd_reg <= pre ;
1: cmd_reg <= aref;
5: cmd_reg <= aref;
9: cmd_reg <= mest;
default:cmd_reg <= nop;
endcase
end
assign flag_init_end = (cnt_cmd >= 'd10) ? 1'b1:1'b0;
assign sdram_addr = (cmd_reg == mest) ? 12'b0000_0011_0010:12'b0100_0000_0000;
assign flag_200us = (cnt_200us >= delay_200us)? 1'b1:1'b0;
endmodule
根据文档引脚描述:
clk为系统时钟输入,cke输出时钟使能信号,设置为高电平使SDRAM处于一直工作状态,cs,ras,cas,we,A0-A11,BA0-BA1,dqm(udqm和ldqm)均为输出,D0-D15为输入输出,vss/vdd/vssq/vddq为电源。
顶层模块代码:
module sdram_top(
input sclk,
input srst,
//sdram interface
output wire sdram_clk,
output wire sdram_cke,
output wire sdram_cs_n,
output wire sdram_cas_n,
output wire sdram_ras_n,
output wire sdram_we_n,
output wire [1:0] sdram_bank,
output wire [11:0] sdram_addr,
output wire [1:0] sdram_dqm,
inout [15:0] sdram_dq
);
//==========================================================
//======= define parameter and internal signal ========
//==========================================================
wire flag_init_end;
wire [3:0] init_cmd;
wire [11:0] init_addr;
//==========================================================
//==================== main code ====================
//==========================================================
assign sdram_cke = 1'b1;
assign sdram_addr = init_addr;
assign {sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n} = init_cmd;
assign sdram_dqm = 2'b00;
assign sdram_clk = ~sclk; //内部时钟上升沿采集命令,命令又是由系统时钟上升沿产生的??(为了保证采样时刻处在数据中间时刻)
sdram_init sdram_init_inst(
.sclk (sclk) ,
.srst (srst) ,
.cmd_reg (init_cmd) ,
.sdram_addr (init_addr) ,
.flag_init_end (flag_init_end)
);
endmodule
注意:在代码中设置了一个sdram_clk,它是系统时钟sclk的反相,sdram_clk连接到SDRAM的clk端口,是为了在中间时刻读取传输过来的数据,因为系统时钟上升沿从FPGA中传输数据到SDRAM,如果SDRAM的clk和系统clk保持一致,则在数据传输的一开始就开始写入SDRAM,可能数据传输仍然处在不稳定状态,反相之后可以保证在数据传输的中间时刻写入,保证稳定性。
测试模块代码:
例化了顶层模块,使用了sdram的插件(模仿SDRAM功能)
`timescale 1ns/1ns
module tb_sdram_top;
reg sclk;
reg srst;
//----------------------------------------
wire sdram_clk;
wire sdram_cke;
wire sdram_cs_n;
wire sdram_cas_n;
wire sdram_ras_n;
wire sdram_we_n;
wire [1:0] sdram_bank;
wire [11:0] sdram_addr;
wire [1:0] sdram_dqm;
wire [15:0] sdram_dq;
//----------------------------------------
initial begin
sclk = 1;
srst <= 0;
#100
srst <=1;
end
always #10 sclk = ~sclk;
defparam sdram_model_plus_inst.addr_bits = 12;
defparam sdram_model_plus_inst.data_bits = 16;
defparam sdram_model_plus_inst.col_bits = 9;
defparam sdram_model_plus_inst.mem_sizes = 2*1024*1024;//1 M
sdram_top sdram_top_inst(
.sclk (sclk ),
.srst (srst ),
.sdram_clk (sdram_clk ),
.sdram_cke (sdram_cke ),
.sdram_cs_n (sdram_cs_n ),
.sdram_cas_n (sdram_cas_n),
.sdram_ras_n (sdram_ras_n),
.sdram_we_n (sdram_we_n ),
.sdram_bank (sdram_bank ),
.sdram_addr (sdram_addr ),
.sdram_dqm (sdram_dqm ),
.sdram_dq (sdram_dq )
);
sdram_model_plus sdram_model_plus_inst(
.Dq (sdram_dq) ,
.Addr (sdram_addr),
.Ba (sdram_bank),
.Clk (sdram_clk),
.Cke (sdram_cke),
.Cs_n (sdram_cs_n),
.Ras_n (sdram_ras_n),
.Cas_n (sdram_cas_n),
.We_n (sdram_we_n),
.Dqm (sdram_dqm),
.Debug (1'b1)
);
endmodule
SDRAM仿真代码:
/***************************************************************************************
作者: 李晟
2003-08-27 V0.1 李晟
添加内存模块倒空功能,在外部需要创建事件:sdram_r ,本SDRAM的内容将会按Bank 顺序damp out 至文件
sdram_data.txt 中
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
//2004-03-04 陈乃奎 修改原程序中将BANK的数据转存入TXT文件的格式
//2004-03-16 陈乃奎 修改SDRAM 的初始化数据
//2004/04/06 陈乃奎 将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
//2004/04/19 陈乃奎 修改参数 parameter tAC = 8;
//2010/09/17 罗瑶 修改sdram的大小,数据位宽,dqm宽度;
/****************************************************************************************
*
* File Name: sdram_model.V
* Version: 0.0f
* Date: July 8th, 1999
* Model: BUS Functional
* Simulator: Model Technology (PC version 5.2e PE)
*
* Dependencies: None
*
* Author: Son P. Huynh
* Email: [email protected]
* Phone: (208) 368-3825
* Company: Micron Technology, Inc.
* Model: sdram_model (1Meg x 16 x 4 Banks)
*
* Description: 64Mb SDRAM Verilog model
*
* Limitation: - Doesn't check for 4096 cycle refresh
*
* Note: - Set simulator resolution to "ps" accuracy
* - Set Debug = 0 to disable $display messages
*
* Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY
* WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
* A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
* Copyright ?1998 Micron Semiconductor Products, Inc.
* All rights researved
*
* Rev Author Phone Date Changes
* ---- ---------------------------- ---------- ---------------------------------------
* 0.0f Son Huynh 208-368-3825 07/08/1999 - Fix tWR = 1 Clk + 7.5 ns (Auto)
* Micron Technology Inc. - Fix tWR = 15 ns (Manual)
* - Fix tRP (Autoprecharge to AutoRefresh)
*
* 0.0a Son Huynh 208-368-3825 05/13/1998 - First Release (from 64Mb rev 0.0e)
* Micron Technology Inc.
****************************************************************************************/
`timescale 1ns / 100ps
module sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);
parameter addr_bits = 13;
parameter data_bits = 16;
parameter col_bits = 9;
parameter mem_sizes = 4*1024*1024 -1;//1 Meg
inout [data_bits - 1 : 0] Dq;
input [addr_bits - 1 : 0] Addr;
input [1 : 0] Ba;
input Clk;
input Cke;
input Cs_n;
input Ras_n;
input Cas_n;
input We_n;
input [1 : 0] Dqm; //高低各8bit
//added by xzli
input Debug;
reg [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据
reg [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank3 [0 : mem_sizes];
reg [1 : 0] Bank_addr [0 : 3]; // Bank Address Pipeline
reg [col_bits - 1 : 0] Col_addr [0 : 3]; // Column Address Pipeline
reg [3 : 0] Command [0 : 3]; // Command Operation Pipeline
reg [3 : 0] Dqm_reg0, Dqm_reg1; // DQM Operation Pipeline
reg [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;
reg [addr_bits - 1 : 0] Mode_reg;
reg [data_bits - 1 : 0] Dq_reg, Dq_dqm;
reg [col_bits - 1 : 0] Col_temp, Burst_counter;
reg Act_b0, Act_b1, Act_b2, Act_b3; // Bank Activate
reg Pc_b0, Pc_b1, Pc_b2, Pc_b3; // Bank Precharge
reg [1 : 0] Bank_precharge [0 : 3]; // Precharge Command
reg A10_precharge [0 : 3]; // Addr[10] = 1 (All banks)
reg Auto_precharge [0 : 3]; // RW AutoPrecharge (Bank)
reg Read_precharge [0 : 3]; // R AutoPrecharge
reg Write_precharge [0 : 3]; // W AutoPrecharge
integer Count_precharge [0 : 3]; // RW AutoPrecharge (Counter)
reg RW_interrupt_read [0 : 3]; // RW Interrupt Read with Auto Precharge
reg RW_interrupt_write [0 : 3]; // RW Interrupt Write with Auto Precharge
reg Data_in_enable;
reg Data_out_enable;
reg [1 : 0] Bank, Previous_bank;
reg [addr_bits - 1 : 0] Row;
reg [col_bits - 1 : 0] Col, Col_brst;
// Internal system clock
reg CkeZ, Sys_clk;
reg [24:0] dd;
// Commands Decode
wire Active_enable = ~Cs_n & ~Ras_n & Cas_n & We_n;
wire Aref_enable = ~Cs_n & ~Ras_n & ~Cas_n & We_n;
wire Burst_term = ~Cs_n & Ras_n & Cas_n & ~We_n;
wire Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
wire Prech_enable = ~Cs_n & ~Ras_n & Cas_n & ~We_n;
wire Read_enable = ~Cs_n & Ras_n & ~Cas_n & We_n;
wire Write_enable = ~Cs_n & Ras_n & ~Cas_n & ~We_n;
// Burst Length Decode
wire Burst_length_1 = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_2 = ~Mode_reg[2] & ~Mode_reg[1] & Mode_reg[0];
wire Burst_length_4 = ~Mode_reg[2] & Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_8 = ~Mode_reg[2] & Mode_reg[1] & Mode_reg[0];
// CAS Latency Decode
wire Cas_latency_2 = ~Mode_reg[6] & Mode_reg[5] & ~Mode_reg[4];
wire Cas_latency_3 = ~Mode_reg[6] & Mode_reg[5] & Mode_reg[4];
// Write Burst Mode
wire Write_burst_mode = Mode_reg[9];
wire Debug; // Debug messages : 1 = On; 0 = Off
wire Dq_chk = Sys_clk & Data_in_enable; // Check setup/hold time for DQ
reg [31:0] mem_d;
event sdram_r,sdram_w,compare;
assign Dq = Dq_reg; // DQ buffer
// Commands Operation
`define ACT 0
`define NOP 1
`define READ 2
`define READ_A 3
`define WRITE 4
`define WRITE_A 5
`define PRECH 6
`define A_REF 7
`define BST 8
`define LMR 9
// // Timing Parameters for -75 (PC133) and CAS Latency = 2
// parameter tAC = 8; //test 6.5
// parameter tHZ = 7.0;
// parameter tOH = 2.7;
// parameter tMRD = 2.0; // 2 Clk Cycles
// parameter tRAS = 44.0;
// parameter tRC = 66.0;
// parameter tRCD = 20.0;
// parameter tRP = 20.0;
// parameter tRRD = 15.0;
// parameter tWRa = 7.5; // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
// parameter tWRp = 0.0; // A2 Version - Precharge mode only (15 ns)
// Timing Parameters for -7 (PC143) and CAS Latency = 3
parameter tAC = 6.5; //test 6.5
parameter tHZ = 5.5;
parameter tOH = 2;
parameter tMRD = 2.0; // 2 Clk Cycles
parameter tRAS = 48.0;
parameter tRC = 70.0;
parameter tRCD = 20.0;
parameter tRP = 20.0;
parameter tRRD = 14.0;
parameter tWRa = 7.5; // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
parameter tWRp = 0.0; // A2 Version - Precharge mode only (15 ns)
// Timing Check variable
integer MRD_chk;
integer WR_counter [0 : 3];
time WR_chk [0 : 3];
time RC_chk, RRD_chk;
time RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
time RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
time RP_chk0, RP_chk1, RP_chk2, RP_chk3;
integer test_file;
//*****display the command of the sdram**************************************
parameter Mode_Reg_Set =4'b0000;
parameter Auto_Refresh =4'b0001;
parameter Row_Active =4'b0011;
parameter Pre_Charge =4'b0010;
parameter PreCharge_All =4'b0010;
parameter Write =4'b0100;
parameter Write_Pre =4'b0100;
parameter Read =4'b0101;
parameter Read_Pre =4'b0101;
parameter Burst_Stop =4'b0110;
parameter Nop =4'b0111;
parameter Dsel =4'b1111;
wire [3:0] sdram_control;
reg cke_temp;
reg [8*13:1] sdram_command;
always@(posedge Clk)
cke_temp<=Cke;
assign sdram_control={Cs_n,Ras_n,Cas_n,We_n};
always@(sdram_control or cke_temp)
begin
case(sdram_control)
Mode_Reg_Set: sdram_command<="Mode_Reg_Set";
Auto_Refresh: sdram_command<="Auto_Refresh";
Row_Active: sdram_command<="Row_Active";
Pre_Charge: sdram_command<="Pre_Charge";
Burst_Stop: sdram_command<="Burst_Stop";
Dsel: sdram_command<="Dsel";
Write: if(cke_temp==1)
sdram_command<="Write";
else
sdram_command<="Write_suspend";
Read: if(cke_temp==1)
sdram_command<="Read";
else
sdram_command<="Read_suspend";
Nop: if(cke_temp==1)
sdram_command<="Nop";
else
sdram_command<="Self_refresh";
default: sdram_command<="Power_down";
endcase
end
//*****************************************************
initial
begin
//test_file=$fopen("test_file.txt");
end
initial
begin
Dq_reg = {data_bits{1'bz}};
{Data_in_enable, Data_out_enable} = 0;
{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
{WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;
{WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;
{RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;
{RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;
{MRD_chk, RC_chk, RRD_chk} = 0;
{RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
{RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
{RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
$timeformat (-9, 0, " ns", 12);
//$readmemh("bank0.txt", Bank0);
//$readmemh("bank1.txt", Bank1);
//$readmemh("bank2.txt", Bank2);
//$readmemh("bank3.txt", Bank3);
/*
for(dd=0;dd<=mem_sizes;dd=dd+1)
begin
Bank0[dd]=dd[data_bits - 1 : 0];
Bank1[dd]=dd[data_bits - 1 : 0]+1;
Bank2[dd]=dd[data_bits - 1 : 0]+2;
Bank3[dd]=dd[data_bits - 1 : 0]+3;
end
*/
initial_sdram(0);
end
task initial_sdram;
input data_sign;
reg [3:0] data_sign;
for(dd=0;dd<=mem_sizes;dd=dd+1)
begin
mem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};
if(data_bits==16)
begin
Bank0[dd]=mem_d[15:0];
Bank1[dd]=mem_d[15:0];
Bank2[dd]=mem_d[15:0];
Bank3[dd]=mem_d[15:0];
end
else if(data_bits==32)
begin
Bank0[dd]=mem_d[31:0];
Bank1[dd]=mem_d[31:0];
Bank2[dd]=mem_d[31:0];
Bank3[dd]=mem_d[31:0];
end
end
endtask
// System clock generator
always
begin
@(posedge Clk)
begin
Sys_clk = CkeZ;
CkeZ = Cke;
end
@(negedge Clk)
begin
Sys_clk = 1'b0;
end
end
always @ (posedge Sys_clk) begin
// Internal Commamd Pipelined
Command[0] = Command[1];
Command[1] = Command[2];
Command[2] = Command[3];
Command[3] = `NOP;
Col_addr[0] = Col_addr[1];
Col_addr[1] = Col_addr[2];
Col_addr[2] = Col_addr[3];
Col_addr[3] = {col_bits{1'b0}};
Bank_addr[0] = Bank_addr[1];
Bank_addr[1] = Bank_addr[2];
Bank_addr[2] = Bank_addr[3];
Bank_addr[3] = 2'b0;
Bank_precharge[0] = Bank_precharge[1];
Bank_precharge[1] = Bank_precharge[2];
Bank_precharge[2] = Bank_precharge[3];
Bank_precharge[3] = 2'b0;
A10_precharge[0] = A10_precharge[1];
A10_precharge[1] = A10_precharge[2];
A10_precharge[2] = A10_precharge[3];
A10_precharge[3] = 1'b0;
// Dqm pipeline for Read
Dqm_reg0 = Dqm_reg1;
Dqm_reg1 = Dqm;
// Read or Write with Auto Precharge Counter
if (Auto_precharge[0] == 1'b1) begin
Count_precharge[0] = Count_precharge[0] + 1;
end
if (Auto_precharge[1] == 1'b1) begin
Count_precharge[1] = Count_precharge[1] + 1;
end
if (Auto_precharge[2] == 1'b1) begin
Count_precharge[2] = Count_precharge[2] + 1;
end
if (Auto_precharge[3] == 1'b1) begin
Count_precharge[3] = Count_precharge[3] + 1;
end
// tMRD Counter
MRD_chk = MRD_chk + 1;
// tWR Counter for Write
WR_counter[0] = WR_counter[0] + 1;
WR_counter[1] = WR_counter[1] + 1;
WR_counter[2] = WR_counter[2] + 1;
WR_counter[3] = WR_counter[3] + 1;
// Auto Refresh
if (Aref_enable == 1'b1) begin
if (Debug) $display ("at time %t AREF : Auto Refresh", $time);
// Auto Refresh to Auto Refresh
if (($time - RC_chk < tRC)&&Debug) begin
$display ("at time %t ERROR: tRC violation during Auto Refresh", $time);
end
// Precharge to Auto Refresh
if (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin
$display ("at time %t ERROR: tRP violation during Auto Refresh", $time);
end
// Precharge to Refresh
if (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin
$display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
end
// Record Current tRC time
RC_chk = $time;
end
// Load Mode Register
if (Mode_reg_enable == 1'b1) begin
// Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
if (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) begin
Mode_reg = Addr;
if (Debug) begin
$display ("at time %t LMR : Load Mode Register", $time);
// CAS Latency
if (Addr[6 : 4] == 3'b010)
$display (" CAS Latency = 2");
else if (Addr[6 : 4] == 3'b011)
$display (" CAS Latency = 3");
else
$display (" CAS Latency = Reserved");
// Burst Length
if (Addr[2 : 0] == 3'b000)
$display (" Burst Length = 1");
else if (Addr[2 : 0] == 3'b001)
$display (" Burst Length = 2");
else if (Addr[2 : 0] == 3'b010)
$display (" Burst Length = 4");
else if (Addr[2 : 0] == 3'b011)
$display (" Burst Length = 8");
else if (Addr[3 : 0] == 4'b0111)
$display (" Burst Length = Full");
else
$display (" Burst Length = Reserved");
// Burst Type
if (Addr[3] == 1'b0)
$display (" Burst Type = Sequential");
else if (Addr[3] == 1'b1)
$display (" Burst Type = Interleaved");
else
$display (" Burst Type = Reserved");
// Write Burst Mode
if (Addr[9] == 1'b0)
$display (" Write Burst Mode = Programmed Burst Length");
else if (Addr[9] == 1'b1)
$display (" Write Burst Mode = Single Location Access");
else
$display (" Write Burst Mode = Reserved");
end
end else begin
$display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
end
// REF to LMR
if ($time - RC_chk < tRC) begin
$display ("at time %t ERROR: tRC violation during Load Mode Register", $time);
end
// LMR to LMR
if (MRD_chk < tMRD) begin
$display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);
end
MRD_chk = 0;
end
// Active Block (Latch Bank Address and Row Address)
if (Active_enable == 1'b1) begin
if (Ba == 2'b00 && Pc_b0 == 1'b1) begin
{Act_b0, Pc_b0} = 2'b10;
B0_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk0 = $time;
RAS_chk0 = $time;
if (Debug) $display ("at time %t ACT : Bank = 0 Row = %d", $time, Addr);
// Precharge to Activate Bank 0
if ($time - RP_chk0 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 0", $time);
end
end else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
{Act_b1, Pc_b1} = 2'b10;
B1_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk1 = $time;
RAS_chk1 = $time;
if (Debug) $display ("at time %t ACT : Bank = 1 Row = %d", $time, Addr);
// Precharge to Activate Bank 1
if ($time - RP_chk1 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 1", $time);
end
end else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
{Act_b2, Pc_b2} = 2'b10;
B2_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk2 = $time;
RAS_chk2 = $time;
if (Debug) $display ("at time %t ACT : Bank = 2 Row = %d", $time, Addr);
// Precharge to Activate Bank 2
if ($time - RP_chk2 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 2", $time);
end
end else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
{Act_b3, Pc_b3} = 2'b10;
B3_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk3 = $time;
RAS_chk3 = $time;
if (Debug) $display ("at time %t ACT : Bank = 3 Row = %d", $time, Addr);
// Precharge to Activate Bank 3
if ($time - RP_chk3 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 3", $time);
end
end else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin
$display ("at time %t ERROR: Bank 0 is not Precharged.", $time);
end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin
$display ("at time %t ERROR: Bank 1 is not Precharged.", $time);
end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin
$display ("at time %t ERROR: Bank 2 is not Precharged.", $time);
end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin
$display ("at time %t ERROR: Bank 3 is not Precharged.", $time);
end
// Active Bank A to Active Bank B
if ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin
$display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
end
// Load Mode Register to Active
if (MRD_chk < tMRD ) begin
$display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
end
// Auto Refresh to Activate
if (($time - RC_chk < tRC)&&Debug) begin
$display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);
end
// Record variables for checking violation
RRD_chk = $time;
Previous_bank = Ba;
end
// Precharge Block
if (Prech_enable == 1'b1) begin
if (Addr[10] == 1'b1) begin
{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;
{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
RP_chk0 = $time;
RP_chk1 = $time;
RP_chk2 = $time;
RP_chk3 = $time;
if (Debug) $display ("at time %t PRE : Bank = ALL",$time);
// Activate to Precharge all banks
if (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||
($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin
$display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);
end
// tWR violation check for write
if (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||
($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin
$display ("at time %t ERROR: tWR violation during Precharge all bank", $time);
end
end else if (Addr[10] == 1'b0) begin
if (Ba == 2'b00) begin
{Pc_b0, Act_b0} = 2'b10;
RP_chk0 = $time;
if (Debug) $display ("at time %t PRE : Bank = 0",$time);
// Activate to Precharge Bank 0
if ($time - RAS_chk0 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);
end
end else if (Ba == 2'b01) begin
{Pc_b1, Act_b1} = 2'b10;
RP_chk1 = $time;
if (Debug) $display ("at time %t PRE : Bank = 1",$time);
// Activate to Precharge Bank 1
if ($time - RAS_chk1 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);
end
end else if (Ba == 2'b10) begin
{Pc_b2, Act_b2} = 2'b10;
RP_chk2 = $time;
if (Debug) $display ("at time %t PRE : Bank = 2",$time);
// Activate to Precharge Bank 2
if ($time - RAS_chk2 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);
end
end else if (Ba == 2'b11) begin
{Pc_b3, Act_b3} = 2'b10;
RP_chk3 = $time;
if (Debug) $display ("at time %t PRE : Bank = 3",$time);
// Activate to Precharge Bank 3
if ($time - RAS_chk3 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);
end
end
// tWR violation check for write
if ($time - WR_chk[Ba] < tWRp) begin
$display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);
end
end
// Terminate a Write Immediately (if same bank or all banks)
if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) begin
Data_in_enable = 1'b0;
end
// Precharge Command Pipeline for Read
if (Cas_latency_3 == 1'b1) begin
Command[2] = `PRECH;
Bank_precharge[2] = Ba;
A10_precharge[2] = Addr[10];
end else if (Cas_latency_2 == 1'b1) begin
Command[1] = `PRECH;
Bank_precharge[1] = Ba;
A10_precharge[1] = Addr[10];
end
end
// Burst terminate
if (Burst_term == 1'b1) begin
// Terminate a Write Immediately
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Terminate a Read Depend on CAS Latency
if (Cas_latency_3 == 1'b1) begin
Command[2] = `BST;
end else if (Cas_latency_2 == 1'b1) begin
Command[1] = `BST;
end
if (Debug) $display ("at time %t BST : Burst Terminate",$time);
end
// Read, Write, Column Latch
if (Read_enable == 1'b1 || Write_enable == 1'b1) begin
// Check to see if bank is open (ACT)
if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
(Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
$display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);
end
// Activate to Read or Write
if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);
if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);
if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);
if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);
// Read Command
if (Read_enable == 1'b1) begin
// CAS Latency pipeline
if (Cas_latency_3 == 1'b1) begin
if (Addr[10] == 1'b1) begin
Command[2] = `READ_A;
end else begin
Command[2] = `READ;
end
Col_addr[2] = Addr;
Bank_addr[2] = Ba;
end else if (Cas_latency_2 == 1'b1) begin
if (Addr[10] == 1'b1) begin
Command[1] = `READ_A;
end else begin
Command[1] = `READ;
end
Col_addr[1] = Addr;
Bank_addr[1] = Ba;
end
// Read interrupt Write (terminate Write immediately)
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Write Command
end else if (Write_enable == 1'b1) begin
if (Addr[10] == 1'b1) begin
Command[0] = `WRITE_A;
end else begin
Command[0] = `WRITE;
end
Col_addr[0] = Addr;
Bank_addr[0] = Ba;
// Write interrupt Write (terminate Write immediately)
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Write interrupt Read (terminate Read immediately)
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
// Interrupting a Write with Autoprecharge
if (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) begin
RW_interrupt_write[Bank] = 1'b1;
if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);
end
// Interrupting a Read with Autoprecharge
if (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) begin
RW_interrupt_read[Bank] = 1'b1;
if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);
end
// Read or Write with Auto Precharge
if (Addr[10] == 1'b1) begin
Auto_precharge[Ba] = 1'b1;
Count_precharge[Ba] = 0;
if (Read_enable == 1'b1) begin
Read_precharge[Ba] = 1'b1;
end else if (Write_enable == 1'b1) begin
Write_precharge[Ba] = 1'b1;
end
end
end
// Read with Auto Precharge Calculation
// The device start internal precharge:
// 1. CAS Latency - 1 cycles before last burst
// and 2. Meet minimum tRAS requirement
// or 3. Interrupt by a Read or Write (with or without AutoPrecharge)
if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
if ((($time - RAS_chk0 >= tRAS) && // Case 2
((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) || // Case 1
(Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
(RW_interrupt_read[0] == 1'b1)) begin // Case 3
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
Auto_precharge[0] = 1'b0;
Read_precharge[0] = 1'b0;
RW_interrupt_read[0] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
end
end
if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
if ((($time - RAS_chk1 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
(RW_interrupt_read[1] == 1'b1)) begin
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
Auto_precharge[1] = 1'b0;
Read_precharge[1] = 1'b0;
RW_interrupt_read[1] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
end
end
if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
if ((($time - RAS_chk2 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
(RW_interrupt_read[2] == 1'b1)) begin
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
Auto_precharge[2] = 1'b0;
Read_precharge[2] = 1'b0;
RW_interrupt_read[2] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
end
end
if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
if ((($time - RAS_chk3 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
(RW_interrupt_read[3] == 1'b1)) begin
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
Auto_precharge[3] = 1'b0;
Read_precharge[3] = 1'b0;
RW_interrupt_read[3] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
end
end
// Internal Precharge or Bst
if (Command[0] == `PRECH) begin // Precharge terminate a read with same bank or all banks
if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
end else if (Command[0] == `BST) begin // BST terminate a read to current bank
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
if (Data_out_enable == 1'b0) begin
Dq_reg <= #tOH {data_bits{1'bz}};
end
// Detect Read or Write command
if (Command[0] == `READ || Command[0] == `READ_A) begin
Bank = Bank_addr[0];
Col = Col_addr[0];
Col_brst = Col_addr[0];
if (Bank_addr[0] == 2'b00) begin
Row = B0_row_addr;
end else if (Bank_addr[0] == 2'b01) begin
Row = B1_row_addr;
end else if (Bank_addr[0] == 2'b10) begin
Row = B2_row_addr;
end else if (Bank_addr[0] == 2'b11) begin
Row = B3_row_addr;
end
Burst_counter = 0;
Data_in_enable = 1'b0;
Data_out_enable = 1'b1;
end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) begin
Bank = Bank_addr[0];
Col = Col_addr[0];
Col_brst = Col_addr[0];
if (Bank_addr[0] == 2'b00) begin
Row = B0_row_addr;
end else if (Bank_addr[0] == 2'b01) begin
Row = B1_row_addr;
end else if (Bank_addr[0] == 2'b10) begin
Row = B2_row_addr;
end else if (Bank_addr[0] == 2'b11) begin
Row = B3_row_addr;
end
Burst_counter = 0;
Data_in_enable = 1'b1;
Data_out_enable = 1'b0;
end
// DQ buffer (Driver/Receiver)
if (Data_in_enable == 1'b1) begin // Writing Data to Memory
// Array buffer
if (Bank == 2'b00) Dq_dqm [data_bits - 1 : 0] = Bank0 [{Row, Col}];
if (Bank == 2'b01) Dq_dqm [data_bits - 1 : 0] = Bank1 [{Row, Col}];
if (Bank == 2'b10) Dq_dqm [data_bits - 1 : 0] = Bank2 [{Row, Col}];
if (Bank == 2'b11) Dq_dqm [data_bits - 1 : 0] = Bank3 [{Row, Col}];
// Dqm operation
if (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];
//if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];
// if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];
// Write to memory
if (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)
$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
//$fdisplay(test_file,"bank:%h row:%h col:%h write:%h",Bank,Row,Col,Dq_dqm);
// Output result
if (Dqm == 4'b1111) begin
if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
end else begin
if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);
// Record tWR time and reset counter
WR_chk [Bank] = $time;
WR_counter [Bank] = 0;
end
// Advance burst counter subroutine
#tHZ Burst;
end else if (Data_out_enable == 1'b1) begin // Reading Data from Memory
//$display("%h , %h, %h",Bank0,Row,Col);
// Array buffer
if (Bank == 2'b00) Dq_dqm [data_bits - 1 : 0] = Bank0 [{Row, Col}];
if (Bank == 2'b01) Dq_dqm [data_bits - 1 : 0] = Bank1 [{Row, Col}];
if (Bank == 2'b10) Dq_dqm [data_bits - 1 : 0] = Bank2 [{Row, Col}];
if (Bank == 2'b11) Dq_dqm [data_bits - 1 : 0] = Bank3 [{Row, Col}];
// Dqm operation
if (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;
if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;
if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;
if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;
// Display result
Dq_reg [data_bits - 1 : 0] = #tAC Dq_dqm [data_bits - 1 : 0];
if (Dqm_reg0 == 4'b1111) begin
if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
end else begin
if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);
end
// Advance burst counter subroutine
Burst;
end
end
// Write with Auto Precharge Calculation
// The device start internal precharge:
// 1. tWR Clock after last burst
// and 2. Meet minimum tRAS requirement
// or 3. Interrupt by a Read or Write (with or without AutoPrecharge)
always @ (WR_counter[0]) begin
if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
if ((($time - RAS_chk0 >= tRAS) && // Case 2
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) || // Case 1
(Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
(RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin // Case 3 (stop count when interrupt)
Auto_precharge[0] = 1'b0;
Write_precharge[0] = 1'b0;
RW_interrupt_write[0] = 1'b0;
#tWRa; // Wait for tWR
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
end
end
end
always @ (WR_counter[1]) begin
if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
if ((($time - RAS_chk1 >= tRAS) &&
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
(RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) begin
Auto_precharge[1] = 1'b0;
Write_precharge[1] = 1'b0;
RW_interrupt_write[1] = 1'b0;
#tWRa; // Wait for tWR
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
end
end
end
always @ (WR_counter[2]) begin
if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
if ((($time - RAS_chk2 >= tRAS) &&
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
(RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) begin
Auto_precharge[2] = 1'b0;
Write_precharge[2] = 1'b0;
RW_interrupt_write[2] = 1'b0;
#tWRa; // Wait for tWR
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
end
end
end
always @ (WR_counter[3]) begin
if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
if ((($time - RAS_chk3 >= tRAS) &&
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
(RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) begin
Auto_precharge[3] = 1'b0;
Write_precharge[3] = 1'b0;
RW_interrupt_write[3] = 1'b0;
#tWRa; // Wait for tWR
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
end
end
end
task Burst;
begin
// Advance Burst Counter
Burst_counter = Burst_counter + 1;
// Burst Type
if (Mode_reg[3] == 1'b0) begin // Sequential Burst
Col_temp = Col + 1;
end else if (Mode_reg[3] == 1'b1) begin // Interleaved Burst
Col_temp[2] = Burst_counter[2] ^ Col_brst[2];
Col_temp[1] = Burst_counter[1] ^ Col_brst[1];
Col_temp[0] = Burst_counter[0] ^ Col_brst[0];
end
// Burst Length
if (Burst_length_2) begin // Burst Length = 2
Col [0] = Col_temp [0];
end else if (Burst_length_4) begin // Burst Length = 4
Col [1 : 0] = Col_temp [1 : 0];
end else if (Burst_length_8) begin // Burst Length = 8
Col [2 : 0] = Col_temp [2 : 0];
end else begin // Burst Length = FULL
Col = Col_temp;
end
// Burst Read Single Write
if (Write_burst_mode == 1'b1) begin
Data_in_enable = 1'b0;
end
// Data Counter
if (Burst_length_1 == 1'b1) begin
if (Burst_counter >= 1) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_2 == 1'b1) begin
if (Burst_counter >= 2) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_4 == 1'b1) begin
if (Burst_counter >= 4) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_8 == 1'b1) begin
if (Burst_counter >= 8) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end
end
endtask
//**********************将SDRAM内的数据直接输出到外部文件*******************************//
/*
integer sdram_data,ind;
always@(sdram_r)
begin
sdram_data=$fopen("sdram_data.txt");
$display("Sdram dampout begin ",sdram_data);
// $fdisplay(sdram_data,"Bank0:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank0[ind]);
// $fdisplay(sdram_data,"Bank1:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank1[ind]);
// $fdisplay(sdram_data,"Bank2:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank2[ind]);
// $fdisplay(sdram_data,"Bank3:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank3[ind]);
$fclose("sdram_data.txt");
//->compare;
end
*/
integer sdram_data,sdram_mem;
reg [24:0] aa,cc;
reg [24:0] bb,ee;
always@(sdram_r)
begin
$display("Sdram dampout begin ",$realtime);
sdram_data=$fopen("sdram_data.txt");
for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)
begin
bb=aa[18:0];
if(aa<=mem_sizes)
$fdisplay(sdram_data,"%0d %0h",aa,Bank0[bb]);
else if(aa<=2*mem_sizes+1)
$fdisplay(sdram_data,"%0d %0h",aa,Bank1[bb]);
else if(aa<=3*mem_sizes+2)
$fdisplay(sdram_data,"%0d %0h",aa,Bank2[bb]);
else
$fdisplay(sdram_data,"%0d %0h",aa,Bank3[bb]);
end
$fclose("sdram_data.txt");
sdram_mem=$fopen("sdram_mem.txt");
for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)
begin
ee=cc[18:0];
if(cc<=mem_sizes)
$fdisplay(sdram_mem,"%0h",Bank0[ee]);
else if(cc<=2*mem_sizes+1)
$fdisplay(sdram_mem,"%0h",Bank1[ee]);
else if(cc<=3*mem_sizes+2)
$fdisplay(sdram_mem,"%0h",Bank2[ee]);
else
$fdisplay(sdram_mem,"%0h",Bank3[ee]);
end
$fclose("sdram_mem.txt");
end
// // Timing Parameters for -75 (PC133) and CAS Latency = 2
// specify
// specparam
tAH = 0.8, // Addr, Ba Hold Time
tAS = 1.5, // Addr, Ba Setup Time
tCH = 2.5, // Clock High-Level Width
tCL = 2.5, // Clock Low-Level Width
// tCK = 10.0, // Clock Cycle Time 100mhz
// tCK = 7.5, // Clock Cycle Time 133mhz
tCK = 7, // Clock Cycle Time 143mhz
tDH = 0.8, // Data-in Hold Time
tDS = 1.5, // Data-in Setup Time
tCKH = 0.8, // CKE Hold Time
tCKS = 1.5, // CKE Setup Time
tCMH = 0.8, // CS#, RAS#, CAS#, WE#, DQM# Hold Time
tCMS = 1.5; // CS#, RAS#, CAS#, WE#, DQM# Setup Time
// tAH = 1, // Addr, Ba Hold Time
// tAS = 1.5, // Addr, Ba Setup Time
// tCH = 1, // Clock High-Level Width
// tCL = 3, // Clock Low-Level Width
tCK = 10.0, // Clock Cycle Time 100mhz
tCK = 7.5, // Clock Cycle Time 133mhz
// tCK = 7, // Clock Cycle Time 143mhz
// tDH = 1, // Data-in Hold Time
// tDS = 2, // Data-in Setup Time
// tCKH = 1, // CKE Hold Time
// tCKS = 2, // CKE Setup Time
// tCMH = 0.8, // CS#, RAS#, CAS#, WE#, DQM# Hold Time
// tCMS = 1.5; // CS#, RAS#, CAS#, WE#, DQM# Setup Time
// $width (posedge Clk, tCH);
// $width (negedge Clk, tCL);
// $period (negedge Clk, tCK);
// $period (posedge Clk, tCK);
// $setuphold(posedge Clk, Cke, tCKS, tCKH);
// $setuphold(posedge Clk, Cs_n, tCMS, tCMH);
// $setuphold(posedge Clk, Cas_n, tCMS, tCMH);
// $setuphold(posedge Clk, Ras_n, tCMS, tCMH);
// $setuphold(posedge Clk, We_n, tCMS, tCMH);
// $setuphold(posedge Clk, Addr, tAS, tAH);
// $setuphold(posedge Clk, Ba, tAS, tAH);
// $setuphold(posedge Clk, Dqm, tCMS, tCMH);
// $setuphold(posedge Dq_chk, Dq, tDS, tDH);
// endspecify
endmodule
收获:1.理解了vereilog代码是用在FPGA当中,将FPGA当做控制器,发送SDRAM的控制信号,需要按照SDRAM的文档设计FPGA的发送数据和控制信号;2.器件内部时钟和FPGA系统时钟并不一定一致。