【OpenMMLab AI实战营 学习笔记 DAY(三)-- mmclassification 安装配置 及 利用resnet训练flower模型】

OpenMMLab AI实战营 学习笔记 DAY(三)-- 在北京超算平台mmclassification 安装配置 及 利用resnet训练flower模型

  • 北京超算平台
  • 一、mmclassification 环境安装配置
  • 二、模型搭建及训练
    • 数据集
    • MMCls 配置⽂件
    • 提交计算

本次课程,仍然是由王若晖老师进行讲解,中间的答疑部分由张子豪(B站 同济子豪兄)进行答疑讲解,最后是由北京超级云计算的沈平岗老师进行北京超算平台的使用,以及具体的代码实现。 具体链接在这,也可以直接打开哔哩哔哩,搜索OpenMMLab,在其主页可以观看。

北京超算平台


点击下载客户端,并安装。参加openmmlab课程的同学可以通过给出的申请二维码扫描,完善信息问卷后等待几个工作日邮箱会发送回复(账号密码)。还可以自己搜索“北京超级云计算中心”微信公众号,关注后回复“2”即可获取申请试算通道。
##注意在申请核时要清楚自己申请CPU资源还是GPU资源,需要使用GPU的服务器有CPU
【OpenMMLab AI实战营 学习笔记 DAY(三)-- mmclassification 安装配置 及 利用resnet训练flower模型】_第1张图片在这里插入图片描述
然后输入自己的账号密码,登录北京超算平台,并且通过ssh访问自己的账号。
【OpenMMLab AI实战营 学习笔记 DAY(三)-- mmclassification 安装配置 及 利用resnet训练flower模型】_第2张图片

一、mmclassification 环境安装配置

根据 mmclassification 的环境要求,需要⽤ anaconda、cuda、gcc 等基础环境模块。在 N30 分区可以使⽤module avail 命令可以使⽤模块信息。

  • 加载 anaconda ,创建⼀个 python 3.8 的环境。
1 # 加载 anaconda/2021.05
2 module load anaconda/2021.05
3
4 # 创建 python=3.8 的环境
5 conda create --name opennmmlab_mmclassification python=3.8
6
7 # 激活环境
8 source activate opennmmlab_mmclassification
  • 安装 torch,torch 参考 需求。注意在 RTX3090 的GPU上,cuda 版本需要 ≥ 11.1 。 如下安装的 torch是 1.10.0+cu111 。使⽤ pip 安装的torch 不包括 cuda,所以需要使⽤ module 加载 cuda/11.1 模块。
1 # 加载 cuda/11.1
2 module load cuda/11.1
3
4 # 安装 torch
5 pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
  • 安装 mmcv-full 模块,mmcv-full 模块安装时候需要注意 torch 和 cuda 版本。参考这⾥ 。
1 pip install mmcv-full==1.7.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10/index.html
  • 安装 openmmlab/mmclassification 模块,建议通过下载编译的⽅式进⾏安装;安装该模块需要 gcc ≥ 5,使⽤ module 加载⼀个 gcc ,例如 module load gcc/7.3 。注意这里的pip install -e .(这个.是当级目录下)。
1 # 加载 gcc/7.3 模块
2 module load gcc/7.3
3
4 # git 下载 mmclassification 代码
5 git clone https://github.com/open-mmlab/mmclassification.git
6
7 # 编译安装
8 cd mmclassification
9 pip install -e .
  • 准备 shell 脚本,将环境信息预先保存在脚本中。
1 #!/bin/bash
2 # 加载模块
3 module load anaconda/2021.05
4 module load cuda/11.1
5 module load gcc/7.3
6
7 # 激活环境
8 source activate opennmmlab_mmclassification

二、模型搭建及训练

数据集

flower 数据集包含 5 种类别的花卉图像:雏菊 daisy 588张,蒲公英 dandelion 556张,玫瑰 rose 583张,向⽇
葵 sunflower 536张,郁⾦⾹ tulip 585张。

数据集下载链接: https://pan.baidu.com/s/1RJmAoxCD_aNPyTRX6w97xQ 提取码: 9x5u

  • 将数据集按照 8:2 的⽐例划分成训练和验证⼦数据集,并将数据集整理成ImageNet的格式
  • 将训练⼦集和验证⼦集放到 train 和 val ⽂件夹下。
 1 flower_dataset
2 |--- classes.txt
3 |--- train.txt
4 |--- val.txt
5 | |--- train
6 | | |--- daisy
7 | | | |--- NAME1.jpg
8 | | | |--- NAME2.jpg
9 | | | |--- ...
10 | | |--- dandelion
11 | | | |--- NAME1.jpg
12 | | | |--- NAME2.jpg
13 | | | |--- ...
14 | | |--- rose
15 | | | |--- NAME1.jpg
16 | | | |--- NAME2.jpg
17 | | | |--- ...
18 | | |--- sunflower
19 | | | |--- NAME1.jpg
20 | | | |--- NAME2.jpg
21 | | | |--- ...
22 | | |--- tulip
23 | | | |--- NAME1.jpg
24 | | | |--- NAME2.jpg
25 | | | |--- ...
26 | |--- val
27 | | |--- daisy
28 | | | |--- NAME1.jpg
29 | | | |--- NAME2.jpg
30 | | | |--- ...
31 | | |--- dandelion
32 | | | |--- NAME1.jpg
33 | | | |--- NAME2.jpg
34 | | | |--- ...
35 | | |--- rose
36 | | | |--- NAME1.jpg
37 | | | |--- NAME2.jpg
38 | | | |--- ...
39 | | |--- sunflower
40 | | | |--- NAME1.jpg
41 | | | |--- NAME2.jpg
42 | | | |--- ...
43 | | |--- tulip
44 | | | |--- NAME1.jpg
45 | | | |--- NAME2.jpg
46 | | | |--- ... 
  • 创建并编辑标注⽂件将所有类别的名称写到 classes.txt 中,每⾏代表⼀个类别。
1 tulip
2 dandelion
3 daisy
4 sunflower
5 rose
  • ⽣成训练(可选)和验证⼦集标注列表 train.txt 和 val.txt ,每⾏应包含⼀个⽂件名和其对应的标签。如下,可将处理好的数据集迁移到 mmclassification/data ⽂件夹下。
1 ...
2 daisy/NAME**.jpg 0
3 daisy/NAME**.jpg 0
4 ...
5 dandelion/NAME**.jpg 1
6 dandelion/NAME**.jpg 1
7 ...
8 rose/NAME**.jpg 2
9 rose/NAME**.jpg 2
10 ...
11 sunflower/NAME**.jpg 3
12 sunflower/NAME**.jpg 3
13 ...
14 tulip/NAME**.jpg 4
15 tulip/NAME**.jpg 4
  • 数据集划分代码 split_data.py 如下,执⾏:
1 python split_data.py [源数据集路径] [⽬标数据集路径]
1 import os
2 import sys
3 import shutil
4 import numpy as np
5
6
7 def load_data(data_path):
8 count = 0
9 data = {}
10 for dir_name in os.listdir(data_path):
11 dir_path = os.path.join(data_path, dir_name)
12 if not os.path.isdir(dir_path):
13 continue
14
15 data[dir_name] = []
16 for file_name in os.listdir(dir_path):
17 file_path = os.path.join(dir_path, file_name)
18 if not os.path.isfile(file_path):
19 continue
20 data[dir_name].append(file_path)
21
22 count += len(data[dir_name])
23 print("{} :{}".format(dir_name, len(data[dir_name])))
24
25 print("total of image : {}".format(count))
26 return data
27
28
29 def copy_dataset(src_img_list, data_index, target_path):
30 target_img_list = []
31 for index in data_index:
32 src_img = src_img_list[index]
33 img_name = os.path.split(src_img)[-1]
34
35 shutil.copy(src_img, target_path)
36 target_img_list.append(os.path.join(target_path, img_name))
37 return target_img_list
38
39
40 def write_file(data, file_name):
41 if isinstance(data, dict):
42 write_data = []
43 for lab, img_list in data.items():
44 for img in img_list:
45 write_data.append("{} {}".format(img, lab))
46 else:
47 write_data = data
48
49 with open(file_name, "w") as f:
50 for line in write_data:
51 f.write(line + "\n")
52
53 print("{} write over!".format(file_name))
54
55
56 def split_data(src_data_path, target_data_path, train_rate=0.8):
57 src_data_dict = load_data(src_data_path)
58
59 classes = []
60 train_dataset, val_dataset = {}, {}
61 train_count, val_count = 0, 0
62 for i, (cls_name, img_list) in enumerate(src_data_dict.items()):
63 img_data_size = len(img_list)
 random_index = np.random.choice(img_data_size, img_data_size,
replace=False)
64
65
66 train_data_size = int(img_data_size * train_rate)
67 train_data_index = random_index[:train_data_size]
68 val_data_index = random_index[train_data_size:]
69
70 train_data_path = os.path.join(target_data_path, "train", cls_name)
71 val_data_path = os.path.join(target_data_path, "val", cls_name)
72 os.makedirs(train_data_path, exist_ok=True)
73 os.makedirs(val_data_path, exist_ok=True)
74
75 classes.append(cls_name)
 train_dataset[i] = copy_dataset(img_list, train_data_index,
train_data_path)
76
77 val_dataset[i] = copy_dataset(img_list, val_data_index, val_data_path)
78
 print("target {} train:{}, val:{}".format(cls_name,
len(train_dataset[i]), len(val_dataset[i])))
79
80 train_count += len(train_dataset[i])
81 val_count += len(val_dataset[i])
82
 print("train size:{}, val size:{}, total:{}".format(train_count, val_count,
train_count + val_count))
83
84
85 write_file(classes, os.path.join(target_data_path, "classes.txt"))
86 write_file(train_dataset, os.path.join(target_data_path, "train.txt"))
87 write_file(val_dataset, os.path.join(target_data_path, "val.txt"))
88
89
90 def main():
91 src_data_path = sys.argv[1]
92 target_data_path = sys.argv[2]
93 split_data(src_data_path, target_data_path, train_rate=0.8)
94
95
96 if __name__ == '__main__':
97 main()

MMCls 配置⽂件

  • 构建配置⽂件可以使⽤继承机制,从 configs/base 中继承 ImageNet 预训练的任何模型,ImageNet 的数据集配置,学习率策略等。
  • 如下内容可命名为 resnet18_b32_flower.py,在 mmclassification/configs 下创建 resnet18 ⽬录,将该⽂件放到⾥⾯。
 _base_ = ['../_base_/models/resnet18.py', '../_base_/datasets/imagenet_bs32.py', '../_base_/default_runtime.py']
model = dict(
    head=dict(
        num_classes=5,
        topk = (1, )
    ))
data = dict(

    samples_per_gpu = 32,
    workers_per_gpu = 2,
    train = dict(
        data_prefix = '/HOME/yourname/run/mmclassification/data/flower/train',
        ann_file = '/HOME/yourname/run/mmclassification/data/flower/train.txt',
        classes = '/HOME/yourname/run/mmclassification/data/flower/classes.txt'
    ),
    val = dict(
        data_prefix = '/HOME/yourname/run/mmclassification/data/flower/val',
        ann_file = '/HOME/yourname/run/mmclassification/data/flower/val.txt',
        classes = '/HOME/yourname/run/mmclassification/data/flower/classes.txt'
    )
    )
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
    policy='step',
    step=[1])
runner = dict(type='EpochBasedRunner', max_epochs=100)
# 预训练模型
load_from ='/HOME/yourname/run/mmclassification/checkpoints/resnet18_batch256_imagenet_20200708-34ab8f90.pth'

提交计算

  • 单卡计算,在环境、数据集、MMCls 配置⽂件准备完成之后就可以提交计算。在 N30 提交计算可以通过作业脚本的⽅式,操作步骤如下:
    1.新建⼀个作业脚本 run.sh,脚本的解释器可以是 /bin/sh、/bin/bash、/bin/csh 脚本内容如下:
    ########注意–work-dir 指定的work就是最后模型存放的空间########
#!/bin/bash
# 加载模块
module load anaconda/2021.05
module load cuda/11.1
module load gcc/7.3
# 激活环境
source activate opennmmlab_mmclassification
# 刷新⽇志缓存
export PYTHONUNBUFFERED=1
# 训练模型
python tools/train.py \
  configs/resnet/resnet18_b32_flower.py \
  --work-dir work/resnet18_b32_flower
  1. 使⽤ sbatch 命令提交作业脚本。例如:
1 sbatch --gpus=1 run.sh
  • –gpus 可以指定申请 GPU 的卡数,在 N30 分区可以申请的 GPU 卡数范围为 1~8,默认每卡配置 6核CPU、60GB 内存。
  • 执⾏ sbatch --gpus=1 run.sh 命令之后可申请到 1 GPU、6 核 CPU、60GB 内存。
  • 提交成功之后会输出作业信息 “Submitted batch job 279689” 其中 279685
    为作业ID,可以通过作业ID查看⽇志信息。
  1. 使⽤ squeue 或 parajobs 查看提交的作业。

    第⼀列 JOBID 是作业号,作业号是唯⼀的。
    第⼆列 PARTITION 是作业运⾏的队列名。
    第三列 NAME 是作业名称
    第四列 USER 是超算账号。
    第五列 ST 是作业状态。R(RUNNING)表示正常运⾏,PD(PENDING)表示在排队,CG(COMPLETING)表示正在退出,S 是管理员暂时挂起,CD(COMPLETED)已完成,F(FAILED)作业已失败
    第六列 TIME 是作业运⾏时间。
    第七列 NODES 是作业运⾏的节点数量
    第⼋列 NODELIST(REASON)对于运⾏作业(R状态)显示作业使⽤的节点列表;如果是排队作业,显示排队原因。
    【OpenMMLab AI实战营 学习笔记 DAY(三)-- mmclassification 安装配置 及 利用resnet训练flower模型】_第3张图片

  2. 查看作业输出⽇志。默认标准输出和标准出错都定向到⼀个 slurm-%j.log (“%j” 为作业ID)⽂件中,当作业状态是 R 的时候,可在当前提交的路径下看到。可以通过 tail 等命令查看⽇志输出。例如:
    在这里插入图片描述
    后续还讲了单节点多卡计算,多节点计算,以及通过载入节点,利用命令nvidia-smi查看GPU利用率。详细的就去观看上面提到的视频,以及官网提供的技术文档。

你可能感兴趣的:(人工智能,学习,python)