Python yield 使用浅析

以下内容改编自廖雪峰老师的博客:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

以下内容在Python3测试下通过。

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

def fab(max): 
   n, a, b = 0, 0, 1 
   while n < max: 
       print (b) 
       a, b = b, a + b 
       n = n + 1

执行 fab(5),我们可以得到如下输出:

fab(5)
1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

def fab(max): 
   n, a, b = 0, 0, 1 
   L = [] 
   while n < max: 
       L.append(b) 
       a, b = b, a + b 
       n = n + 1 
   return L

可以使用如下方式打印出 fab 函数返回的 List:

for n in fab(5): 
    print (n) 
1
1
2
3
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass
---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

 in 
----> 1 for i in xrange(1000): pass


NameError: name 'xrange' is not defined

因为我使用了python3,所以出现了报错.

请注意:
range()xrange() 在Python 2里是两种不同的实现。但是在Python 3里,range()这种实现被移除了;保留了xrange()的实现,且将xrange()重新命名成range()

在python3中使用range()则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 range 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

class Fab(object): 
 
   def __init__(self, max): 
       self.max = max 
       self.n, self.a, self.b = 0, 0, 1 
 
   def __iter__(self):     
       return self 
 
   def __next__(self): 
       if self.n < self.max: 
           r = self.b 
           self.a, self.b = self.b, self.a + self.b 
           self.n = self.n + 1 
           return r 
       raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

for n in Fab(5): 
    print (n) 
1
1
2
3
5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        
        yield b 
        # print b 
        a, b = b, a + b 
        n = n + 1 

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

for n in fab(5): 
     print (n) 
1
1
2
3
5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 __next__() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 __next__() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

f = fab(5)
f.__next__()
1
f.__next__()
1
f.__next__()
2
f.__next__()
3
f.__next__()
5
f.__next__()
---------------------------------------------------------------------------

StopIteration                             Traceback (most recent call last)

 in 
----> 1 f.__next__()


StopIteration: 

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 __next__()(在 for 循环中会自动调用 __ext__())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 __next__() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

from inspect import isgeneratorfunction
isgeneratorfunction(fab)
True

要注意区分 fabfab(5)fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

类的定义和类的实例

import types
isinstance(fab, types.GeneratorType)
False
isinstance(fab(5), types.GeneratorType) 
True

fab 是无法迭代的,而 fab(5) 是可迭代的:

from collections import Iterable 
isinstance(fab, Iterable) 
False
isinstance(fab(5), Iterable)
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

f1 = fab(3) 
f2 = fab(5) 
print ('f1:', f1.__next__()) 
 
print ('f2:', f2.__next__()) 
 
print ('f1:', f1.__next__())

print ('f2:', f2.__next__()) 
 
print ('f1:', f1.__next__()) 

print ('f2:', f2.__next__()) 
 
print ('f2:', f2.__next__()) 

print ('f2:', f2.__next__()) 

f1: 1
f2: 1
f1: 1
f2: 1
f1: 2
f2: 2
f2: 3
f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

def read_file(fpath): 
   BLOCK_SIZE = 1024 
   with open(fpath, 'rb') as f: 
       while True: 
           block = f.read(BLOCK_SIZE) 
           if block: 
               yield block 
           else: 
               return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法, 我会继续补充。


你可能感兴趣的:(Python yield 使用浅析)