python产品缺陷检测_3 Kaggle钢材表面缺陷检测竞赛的探索与实践-阿里云开发者社区...

3.1 序言

传统的工业生产制造,由于科学技术的限制仍然主要采用人工检测的方法去检测产品表面的缺陷,这种方法由于人工的限制和技术的落后,不仅检测产品的速度慢、效率低下,而且在检测的过程中容易出错,从而导致了检测结果的不精确。

通过人工智能算法结合机器视觉技术,利用影像数据,实时对产品的斑点、凹坑、划痕、色差、缺损等缺陷进行检测,并支持工业摄像头、超声、微波、红外及激光全息和X摄像照相机等不同的图像信源,实现精确检测。

3.2 研究背景

当今社会,随着计算机技术,人工智能等科学技术的出现和发展,以及研究的深入,出现了基于机器视觉技术的表面缺陷检测技术。这种技术的出现,大大提高了生产作业的效率,避免了因作业条件,主观判断等影响检测结果的准确性,实现能更好更精确地进行表面缺陷检测,更加快速的识别产品表面瑕疵缺陷。

产品表面缺陷检测属于机器视觉技术的一种,就是利用计算机视觉模拟人类视觉的功能,从具体的实物进行图象的采集处理、计算、最终进行实际检测、控制和应用。产品的表面缺陷检测是机器视觉检测的一个重要部分,其检测的准确程度直接会影响产品最终的质量优劣。由于使用人工检测的方法早已不能满足生产和现代工艺生产制造的需求,而利用机器视觉检测很好地克服了这一点,表面缺陷检测系统的广泛应用促进了企业工厂产品高质量的生产与制造业智能自动化的发展。

3.3 研究意义

工业产品缺陷检测这块市场空间很大,目前除了传统的机器视觉厂商在做以外,深度学习创业巨头涉及的比较少。缺陷检测可以为工厂带来以下好处:

1、优化人力:人工检测易受经验和心里等因素的影响,精度低,稳定性差;解

你可能感兴趣的:(python产品缺陷检测)