C++力扣题目216--组合求和II

216.组合总和III

力扣题目链接(opens new window)

找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

说明:

  • 所有数字都是正整数。
  • 解集不能包含重复的组合。

示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]

示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]

#思路

本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。

相对于77. 组合 (opens new window),无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。

想到这一点了,做过77. 组合 (opens new window)之后,本题是简单一些了。

本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

选取过程如图:

C++力扣题目216--组合求和II_第1张图片

图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。

#回溯三部曲

  • 确定递归函数参数

和77. 组合 (opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。

这里我依然定义path 和 result为全局变量。

至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。

vector> result; // 存放结果集
vector path; // 符合条件的结果

接下来还需要如下参数:

  • targetSum(int)目标和,也就是题目中的n。
  • k(int)就是题目中要求k个数的集合。
  • sum(int)为已经收集的元素的总和,也就是path里元素的总和。
  • startIndex(int)为下一层for循环搜索的起始位置。

所以代码如下:

vector> result;
vector path;
void backtracking(int targetSum, int k, int sum, int startIndex)

其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。

还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。

  • 确定终止条件

什么时候终止呢?

在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。

所以如果path.size() 和 k相等了,就终止。

如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

所以 终止代码如下:

if (path.size() == k) {
    if (sum == targetSum) result.push_back(path);
    return; // 如果path.size() == k 但sum != targetSum 直接返回
}

  • 单层搜索过程

本题和77. 组合 (opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9

如图: 

C++力扣题目216--组合求和II_第2张图片

处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。

代码如下:

for (int i = startIndex; i <= 9; i++) {
    sum += i;
    path.push_back(i);
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}

别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!

参照关于回溯算法,你该了解这些! (opens new window)中的模板,不难写出如下C++代码:

class Solution {
private:
    vector> result; // 存放结果集
    vector path; // 符合条件的结果
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9; i++) {
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

#剪枝

这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。

如图: 

C++力扣题目216--组合求和II_第3张图片

已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。

那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:

if (sum > targetSum) { // 剪枝操作
    return;
}

当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。

for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
    sum += i; // 处理
    path.push_back(i); // 处理
    if (sum > targetSum) { // 剪枝操作
        sum -= i; // 剪枝之前先把回溯做了
        path.pop_back(); // 剪枝之前先把回溯做了
        return;
    }
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}

和回溯算法:组合问题再剪剪枝 (opens new window)一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。

最后C++代码如下:

class Solution {
private:
    vector> result; // 存放结果集
    vector path; // 符合条件的结果
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (sum > targetSum) { // 剪枝操作
            return; 
        }
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

#总结

开篇就介绍了本题与77.组合 (opens new window)的区别,相对来说加了元素总和的限制,如果做完77.组合 (opens new window)再做本题在合适不过。

分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。

相信做完本题,大家对组合问题应该有初步了解了。

你可能感兴趣的:(算法,数据结构,c++,leetcode)