三次握手与四次挥手详解

文章目录

  • 三次握手
    • 三次握手的过程
    • 各个状态的含义
    • 为什么是三次握手?不是两次、四次?
    • 第一次握手丢失了,会发生什么?
    • 第二次握手丢失了,会发生什么?
    • 第三次握手丢失了,会发生什么?
  • 四次挥手
    • 各个状态的含义
    • 为什么挥手需要四次?
    • 四次挥手可以变成三次挥手吗?
    • 第一次挥手丢失了,会发生什么?
    • 第二次挥手丢失了,会发生什么?
    • 第三次挥手丢失了,会发生什么?
    • 第四次挥手丢失了,会发生什么?
  • 总结

此篇文章大部分是从小林coding提取而来,用于自己复习所用,若想要深入学习,可进入原链接自行学习,TCP 三次握手与四次挥手面试题

三次握手

三次握手的过程

三次握手与四次挥手详解_第1张图片

  1. 一开始,客户端和服务端都处于 CLOSE 状态。先是服务端主动监听某个端口,处于 LISTEN 状态
  2. 客户端会随机初始化序号(client_isn),将此序号置于 TCP 首部的「序号」字段中,同时把 SYN 标志位置为 1,表示 SYN 报文。接着把第一个 SYN 报文发送给服务端,表示向服务端发起连接,该报文不包含应用层数据,之后客户端处于 SYN-SENT 状态。
  3. 服务端收到客户端的 SYN 报文后,首先服务端也随机初始化自己的序号(server_isn),将此序号填入 TCP 首部的「序号」字段中,其次把 TCP 首部的「确认应答号」字段填入 client_isn + 1, 接着把 SYN 和 ACK 标志位置为 1。最后把该报文发给客户端,该报文也不包含应用层数据,之后服务端处于 SYN-RCVD 状态。
  4. 客户端收到服务端报文后,还要向服务端回应最后一个应答报文,首先该应答报文 TCP 首部 ACK 标志位置为 1 ,其次「确认应答号」字段填入 server_isn + 1 ,最后把报文发送给服务端,这次报文可以携带客户到服务端的数据,之后客户端处于 ESTABLISHED 状态。
  5. 服务端收到客户端的应答报文后,也进入 ESTABLISHED 状态。

从上面的过程可以发现第三次握手是可以携带数据的,前两次握手是不可以携带数据的。
一旦完成三次握手,双方都处于 ESTABLISHED 状态,此时连接就已建立完成,客户端和服务端就可以相互发送数据了。

各个状态的含义

  • LISTEN - 侦听来⾃远⽅TCP端⼝的连接请求;
  • SYN-SENT -在发送连接请求后等待匹配的连接请求;
  • SYN-RECEIVED - 在收到和发送⼀个连接请求后等待对连接请求的确认;
  • ESTABLISHED- 代表⼀个打开的连接,数据可以传送给⽤户;
  • CLOSE - 没有任何连接状态;

为什么是三次握手?不是两次、四次?

在谢希仁著《计算机网络》第四版中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。在另一部经典的《计算机网络》一书中讲“三次握手”的目的是为了解决“网络中存在延迟的重复分组”的问题。这两种不用的表述其实阐明的是同一个问题。谢希仁版《计算机网络》中的例子是这样的,“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”这个例子很清晰的阐释了“三次握手”对于建立可靠连接的意义。

1. 避免已失效的连接请求报文段发生错误

在网络中,经常会出现一些网络延迟或者拥塞等问题,从而导致一些数据包的丢失或者超时,如果TCP协议在建立连接的过程中只使用两次握手,那么就可能会出现这样一种情况:客户端向服务器发送了一个连接请求报文,但是由于网络原因导致该报文丢失了,客户端并没有收到来自服务器的响应。此时,客户端并不知道自己的请求已经被服务器接收了,而服务器也会认为客户端的请求未被处理,从而等待客户端的另外一个请求报文,导致连接不能够正常建立。

2. 确保双方的接收能力和发送能力都正常

握手的过程中,三次握手可以确保双方的接收和发送能力都正常。在第一次握手时,客户端向服务器发送一个SYN报文,该报文中包含了客户端初始化序列号的信息,表示客户端打算发送数据到服务器。当服务器收到了该SYN报文后,会返回一个ACK报文作为确认,该ACK报文中包含了服务器的初始化序列号以及对客户端SYN报文的确认。在第三次握手中,客户端再次向服务器发送一个ACK报文,表示客户端也能够接收到服务器的SYN报文。通过这个过程,双方可以确认彼此的接收和发送能力都是正常的。

3. 防止客户端重复连接请求造成混乱

在TCP协议中,每个连接都需要唯一的标识符才能建立。如果只进行两次握手,那么就可能会出现这样一种情况:客户端发送了一个连接请求,但是该请求在网络中被延迟了一段时间,然后又重复发送了一遍。当服务器接收到了这两个连接请求时,就无法判断哪一个才是有效的连接请求,从而导致连接建立混乱。

因此,从上述几个方面来看,TCP协议选用三次握手是必要的。通过三次握手的过程,可以确保连接请求的正确性和可靠性,而且还可以防止重复连接请求的问题。相比之下,如果TCP协议采用两次握手的话,就会存在以上三个问题,也就无法保证通信的可靠性和稳定性。

第一次握手丢失了,会发生什么?

当客户端想和服务端建立 TCP 连接的时候,首先第一个发的就是 SYN 报文,然后进入到 SYN_SENT 状态。

在这之后,如果客户端迟迟收不到服务端的 SYN-ACK 报文(第二次握手),就会触发「超时重传」机制,重传 SYN 报文,而且重传的 SYN 报文的序列号都是一样的。
不同版本的操作系统可能超时时间不同,有的 1 秒的,也有 3 秒的,这个超时时间是写死在内核里的,如果想要更改则需要重新编译内核,比较麻烦。

当客户端在 1 秒后没收到服务端的 SYN-ACK 报文后,客户端就会重发 SYN 报文,那到底重发几次呢?

在 Linux 里,客户端的 SYN 报文最大重传次数由 tcp_syn_retries内核参数控制,这个参数是可以自定义的,默认值一般是 5。
通常,第一次超时重传是在 1 秒后,第二次超时重传是在 2 秒,第三次超时重传是在 4 秒后,第四次超时重传是在 8 秒后,第五次是在超时重传 16 秒后。没错,每次超时的时间是上一次的 2 倍。

当第五次超时重传后,会继续等待 32 秒,如果服务端仍然没有回应 ACK,客户端就不再发送 SYN 包,然后断开 TCP 连接。

所以,总耗时是 1+2+4+8+16+32=63 秒,大约 1 分钟左右。

举个例子,假设 tcp_syn_retries 参数值为 3,那么当客户端的 SYN 报文一直在网络中丢失时,会发生下图的过程:
三次握手与四次挥手详解_第2张图片
具体过程:
当客户端超时重传 3 次 SYN 报文后,由于 tcp_syn_retries 为 3,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接。

第二次握手丢失了,会发生什么?

当服务端收到客户端的第一次握手后,就会回 SYN-ACK 报文给客户端,这个就是第二次握手,此时服务端会进入 SYN_RCVD 状态。

第二次握手的 SYN-ACK 报文其实有两个目的 :

  • 第二次握手里的 ACK, 是对第一次握手的确认报文;
  • 第二次握手里的 SYN,是服务端发起建立 TCP 连接的报文;

所以,如果第二次握手丢了,就会发生比较有意思的事情,具体会怎么样呢?

因为第二次握手报文里是包含对客户端的第一次握手的 ACK 确认报文,所以,如果客户端迟迟没有收到第二次握手,那么客户端就觉得可能自己的 SYN 报文(第一次握手)丢失了,于是客户端就会触发超时重传机制,重传 SYN 报文。

然后,因为第二次握手中包含服务端的 SYN 报文,所以当客户端收到后,需要给服务端发送 ACK 确认报文(第三次握手),服务端才会认为该 SYN 报文被客户端收到了。

那么,如果第二次握手丢失了,服务端就收不到第三次握手,于是服务端这边会触发超时重传机制,重传 SYN-ACK 报文。

在 Linux 下,SYN-ACK 报文的最大重传次数由 tcp_synack_retries内核参数决定,默认值是 5。
因此,当第二次握手丢失了,客户端和服务端都会重传:

  • 客户端会重传 SYN 报文,也就是第一次握手,最大重传次数由 tcp_syn_retries内核参数决定;
  • 服务端会重传 SYN-ACK 报文,也就是第二次握手,最大重传次数由 tcp_synack_retries 内核参数决定。

举个例子,假设 tcp_syn_retries 参数值为 1,tcp_synack_retries 参数值为 2,那么当第二次握手一直丢失时,发生的过程如下图:
三次握手与四次挥手详解_第3张图片
具体过程:

  • 当客户端超时重传 1 次 SYN 报文后,由于 tcp_syn_retries 为 1,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接。
  • 当服务端超时重传 2 次 SYN-ACK 报文后,由于 tcp_synack_retries 为 2,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第三次握手(ACK 报文),那么服务端就会断开连接。

第三次握手丢失了,会发生什么?

客户端收到服务端的 SYN-ACK 报文后,就会给服务端回一个 ACK 报文,也就是第三次握手,此时客户端状态进入到 ESTABLISH 状态。

因为这个第三次握手的 ACK 是对第二次握手的 SYN 的确认报文,所以当第三次握手丢失了,如果服务端那一方迟迟收不到这个确认报文,就会触发超时重传机制,重传 SYN-ACK 报文,直到收到第三次握手,或者达到最大重传次数。

注意,ACK 报文是不会有重传的,当 ACK 丢失了,就由对方重传对应的报文。

举个例子,假设 tcp_synack_retries 参数值为 2,那么当第三次握手一直丢失时,发生的过程如下图:
三次握手与四次挥手详解_第4张图片
具体过程:

  • 当服务端超时重传 2 次 SYN-ACK 报文后,由于 tcp_synack_retries 为 2,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第三次握手(ACK 报文),那么服务端就会断开连接。

四次挥手

双方都可以主动断开连接,断开连接后主机中的「资源」将被释放,四次挥手的过程如下图:
三次握手与四次挥手详解_第5张图片

  • 客户端打算关闭连接,此时会发送一个 TCP 首部 FIN 标志位被置为 1 的报文,也即 FIN 报文,之后客户端进入 FIN_WAIT_1 状态。
  • 服务端收到该报文后,就向客户端发送 ACK 应答报文,接着服务端进入 CLOSE_WAIT 状态。
  • 客户端收到服务端的 ACK 应答报文后,之后进入 FIN_WAIT_2 状态。
  • 等待服务端处理完数据后,也向客户端发送 FIN 报文,之后服务端进入 LAST_ACK 状态。
  • 客户端收到服务端的 FIN 报文后,回一个 ACK 应答报文,之后进入 TIME_WAIT 状态
  • 服务端收到了 ACK 应答报文后,就进入了 CLOSE 状态,至此服务端已经完成连接的关闭。
  • 客户端在经过 2MSL 一段时间后,自动进入 CLOSE 状态,至此客户端也完成连接的关闭。
  • 你可以看到,每个方向都需要一个 FIN 和一个 ACK,因此通常被称为四次挥手。

这里一点需要注意是:主动关闭连接的,才有 TIME_WAIT 状态。

各个状态的含义

  • ESTABLISHED- 代表⼀个打开的连接,数据可以传送给⽤户;
  • FIN-WAIT-1 - 等待远程TCP的连接中断请求,或先前的连接中断请求的确认;
  • FIN-WAIT-2 - 从远程TCP等待连接中断请求;
  • CLOSE-WAIT - 等待从本地⽤户发来的连接中断请求;
  • LAST-ACK - 等待原来发向远程TCP的连接中断请求的确认;
  • TIME-WAIT -等待⾜够的时间以确保远程TCP接收到连接中断请求的确认;
  • CLOSE - 没有任何连接状态;

为什么挥手需要四次?

再来回顾下四次挥手双方发 FIN 包的过程,就能理解为什么需要四次了。

  • 关闭连接时,客户端向服务端发送 FIN 时,仅仅表示客户端不再发送数据了但是还能接收数据。
  • 服务端收到客户端的 FIN 报文时,先回一个 ACK 应答报文,而服务端可能还有数据需要处理和发送,等服务端不再发送数据时,才发送 FIN 报文给客户端来表示同意现在关闭连接。

从上面过程可知,服务端通常需要等待完成数据的发送和处理,所以服务端的 ACK 和 FIN 一般都会分开发送,因此是需要四次挥手。

四次挥手可以变成三次挥手吗?

四次挥手把同意对方请求跟自身请求分离开。是因为在客户端请求断开时(客户端发送端->服务器接收端),服务器可能还有数据未发完,所以需要分开操作:

  1. 先同意对方关闭连接,对方无法传输数据;(第二次挥手)
  2. 自己若还有数据未发送完,接着发送直至全部发送完毕;
  3. 请求自身关闭连接;(第三次挥手)
  4. 也就是说,三次握手、四次挥手差别就在第二次,有没有把同意对方请求跟自身请求拆分开。

如果客户端请求关闭连接时,服务器并没有数据需要发送,其实三次挥手应该也是可以的。但一般情况下,客户端猝不及防地请求断开连接,服务器还是有数据需要传输的,所以四次挥手更加地稳妥。

第一次挥手丢失了,会发生什么?

当客户端(主动关闭方)调用 close 函数后,就会向服务端发送 FIN 报文,试图与服务端断开连接,此时客户端的连接进入到 FIN_WAIT_1 状态。

正常情况下,如果能及时收到服务端(被动关闭方)的 ACK,则会很快变为 FIN_WAIT2状态。

如果第一次挥手丢失了,那么客户端迟迟收不到被动方的 ACK 的话,也就会触发超时重传机制,重传 FIN 报文,重发次数由 tcp_orphan_retries 参数控制。

当客户端重传 FIN 报文的次数超过 tcp_orphan_retries 后,就不再发送 FIN 报文,则会在等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到第二次挥手,那么直接进入到 close 状态。

举个例子,假设 tcp_orphan_retries 参数值为 3,当第一次挥手一直丢失时,发生的过程如下图:
三次握手与四次挥手详解_第6张图片
具体过程:

  • 当客户端超时重传 3 次 FIN 报文后,由于 tcp_orphan_retries 为 3,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次挥手(ACK报文),那么客户端就会断开连接。

第二次挥手丢失了,会发生什么?

当服务端收到客户端的第一次挥手后,就会先回一个 ACK 确认报文,此时服务端的连接进入到 CLOSE_WAIT 状态。

在前面我们也提了,ACK 报文是不会重传的,所以如果服务端的第二次挥手丢失了,客户端就会触发超时重传机制,重传 FIN 报文,直到收到服务端的第二次挥手,或者达到最大的重传次数。

举个例子,假设 tcp_orphan_retries 参数值为 2,当第二次挥手一直丢失时,发生的过程如下图:

三次握手与四次挥手详解_第7张图片
具体过程:

  • 当客户端超时重传 2 次 FIN 报文后,由于 tcp_orphan_retries 为 2,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次挥手(ACK 报文),那么客户端就会断开连接。
  • 这里提一下,当客户端收到第二次挥手,也就是收到服务端发送的 ACK 报文后,客户端就会处于 FIN_WAIT2 状态,在这个状态需要等服务端发送第三次挥手,也就是服务端的 FIN 报文。

对于 close 函数关闭的连接,由于无法再发送和接收数据,所以FIN_WAIT2 状态不可以持续太久,而 tcp_fin_timeout 控制了这个状态下连接的持续时长,默认值是 60 秒。

这意味着对于调用 close 关闭的连接,如果在 60 秒后还没有收到 FIN 报文,客户端(主动关闭方)的连接就会直接关闭,如下图:
三次握手与四次挥手详解_第8张图片
但是注意,如果主动关闭方使用 shutdown 函数关闭连接,指定了只关闭发送方向,而接收方向并没有关闭,那么意味着主动关闭方还是可以接收数据的。

此时,如果主动关闭方一直没收到第三次挥手,那么主动关闭方的连接将会一直处于 FIN_WAIT2 状态(tcp_fin_timeout 无法控制 shutdown 关闭的连接)。如下图:
三次握手与四次挥手详解_第9张图片

第三次挥手丢失了,会发生什么?

当服务端(被动关闭方)收到客户端(主动关闭方)的 FIN 报文后,内核会自动回复 ACK,同时连接处于 CLOSE_WAIT 状态,顾名思义,它表示等待应用进程调用 close 函数关闭连接。

此时,内核是没有权利替代进程关闭连接,必须由进程主动调用 close 函数来触发服务端发送 FIN 报文。

服务端处于 CLOSE_WAIT 状态时,调用了 close 函数,内核就会发出 FIN 报文,同时连接进入 LAST_ACK 状态,等待客户端返回 ACK 来确认连接关闭。

如果迟迟收不到这个 ACK,服务端就会重发 FIN 报文,重发次数仍然由 tcp_orphan_retries 参数控制,这与客户端重发 FIN 报文的重传次数控制方式是一样的。

举个例子,假设 tcp_orphan_retries = 3,当第三次挥手一直丢失时,发生的过程如下图:
三次握手与四次挥手详解_第10张图片
具体过程:

  • 当服务端重传第三次挥手报文的次数达到了 3 次后,
    由于tcp_orphan_retries 为 3,达到了重传最大次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第四次挥手(ACK报文),那么服务端就会断开连接。
  • 客户端因为是通过 close 函数关闭连接的,处于 FIN_WAIT_2 状态是有时长限制的,如果 tcp_fin_timeout 时间内还是没能收到服务端的第三次挥手(FIN 报文),那么客户端就会断开连接。

第四次挥手丢失了,会发生什么?

当客户端收到服务端的第三次挥手的 FIN 报文后,就会回 ACK 报文,也就是第四次挥手,此时客户端连接进入 TIME_WAIT 状态。

在 Linux 系统,TIME_WAIT 状态会持续 2MSL 后才会进入关闭状态。

然后,服务端(被动关闭方)没有收到 ACK 报文前,还是处于 LAST_ACK 状态。

如果第四次挥手的 ACK 报文没有到达服务端,服务端就会重发 FIN 报文,重发次数仍然由前面介绍过的 tcp_orphan_retries 参数控制。

举个例子,假设 tcp_orphan_retries 为 2,当第四次挥手一直丢失时,发生的过程如下:

三次握手与四次挥手详解_第11张图片
具体过程:

  • 当服务端重传第三次挥手报文达到 2 时,由于 tcp_orphan_retries 为 2, 达到了最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第四次挥手(ACK 报文),那么服务端就会断开连接。
  • 客户端在收到第三次挥手后,就会进入 TIME_WAIT 状态,开启时长为 2MSL 的定时器,如果途中再次收到第三次挥手(FIN 报文)后,就会重置定时器,当等待 2MSL 时长后,客户端就会断开连接。

总结

TCP/IP 协议是传输层的一个面向连接的安全可靠的一个传输协议,三次握手的机制是为了保证能建立一个安全可靠的连接,那么第一次握手是由客户端发起,客户端会向服务端发送一个报文,在报文里面:SYN标志位置为1,表示发起新的连接。当服务端收到这个报文之后就知道客户端要和我建立一个新的连接,于是服务端就向客户端发送一个确认消息包,在这个消息包里面:ack标志位置为1,表示确认客户端发起的第一次连接请求。以上两次握手之后,对于客户端而言:已经明确了我既能给服务端成功发消息,也能成功收到服务端的响应。但是对于服务端而言:两次握手是不够的,因为到目前为止,服务端只知道一件事,客户端发给我的消息我能收到,但是我响应给客户端的消息,客户端能不能收到我是不知道的。所以,还需要进行第三次握手,第三次握手就是当客户端收到服务端发送的确认响应报文之后,还要继续去给服务端进行回应,也是一个ack标志位置1的确认消息。通过以上三次连接,不管是客户端还是服务端,都知道我既能给对方发送消息,也能收到对方的响应。那么,这个连接就被安全的建了。

四次挥手手机制也是由客户端去发起,客户端会发送一个报文,在报文里面FIN位标志位置一,当服务端收到这个报文之后,我就知道了客户端想要和我断开连接,但是此时服务端不一定能做好准备,因为当客户端发起断开连接的这个消息的时候,对于服务端而言,他和还有可能有未发送完的消息,他还要继续发送,所以呢,此时对于服务端而言,我只能进行一个消息确认,就是我先告诉服务端,我知道你要给我断开连接了,但是我这里边还可能没有做好准备,你需要等我一下,等会儿我会告诉你,于是呢,发完这个消息确认包之后,可能稍过片刻它就会继续发送一个断开连接的一个报文啊,也是一个FIN位置1的报文也是由服务端发给客户端的啊,这个报文表示服务端已经做好了断开连接的准备,那么当这个报文发给客户端的时候,客户端同样要给服务端继续发送一个消息确认的报文一共有四次,那么,通过这四次的相互沟通和连接,我就知道了,不管是服务端还是客户端都已经做好了断开连接的

你可能感兴趣的:(网络,网络,java,tcp/ip)