- 【计算机网络】第三章:数据链路层(上)
iFulling
计算机网络笔记计算机网络网络网络协议笔记
本篇笔记课程来源:王道计算机考研计算机网络接下节:【计算机网络】第三章:数据链路层(下)【计算机网络】第三章:数据链路层(上)一、数据链路层的功能1.基本概念2.功能总览二、组帧(封装成帧)1.主要实现2.字符计数法3.字节填充法4.零比特填充法5.违规编码法三、差错控制1.主要实现2.检错编码Ⅰ.奇偶校验码Ⅱ.循环冗余校验码3.纠错编码Ⅰ.海明校验码四、流量控制、可靠传输1.相关机制Ⅰ.滑动窗口
- Python 网络爬虫的基本流程及 robots 协议详解
女码农的重启
python网络爬虫JAVA开发语言
数据驱动的时代,网络爬虫作为高效获取互联网信息的工具,其规范化开发离不开对基本流程的掌握和对robots协议的遵守。本文将系统梳理Python网络爬虫的核心流程,并深入解读robots协议的重要性及实践规范。一、Python网络爬虫的基本流程Python网络爬虫的工作过程可分为四个核心阶段,每个阶段环环相扣,共同构成数据采集的完整链路。1.1发起网络请求这是爬虫与目标服务器交互的第一步,通过发送H
- 【Linux | 网络】socket编程 - 使用UDP实现服务端向客户端提供简单的服务
是阿建吖!
【网络】【Linux】网络linuxudp
目录一、UdpServerSever(客户端发送信息,服务端直接返回信息)1.1Comm.hpp(公共数据)1.2Log.hpp(日志)1.3InetAddr.hpp(管理sockaddr_in相关信息)1.4NoCopy.hpp(防拷贝)1.5UdpServer.hpp(服务端封装)1.6Main.cpp(服务端)1.7UdpClient.cpp(客户端)二、UdpServerExecute(客
- 【Java源码阅读系列44】深度解读Java NIO ByteBuffer 源码
·云扬·
源码阅读系列之Javajavanio开发语言
JavaNIO(NewInput/Output)中的ByteBuffer是Buffer抽象类的具体子类,专门用于处理字节数据的高效读写。作为NIO的核心组件,ByteBuffer支持堆内存(Heap)和直接内存(Direct)两种存储方式,广泛应用于网络通信、文件IO等场景。本文将结合源码,深入解析ByteBuffer的核心机制、关键方法及设计模式的应用。一、ByteBuffer的核心特性与存储方
- 网络工程师组网必用,动态路由OSPF及MPLS静态LSP配置
wozuimang
ICT网络工程师集训营路由交换网络工程师MPLS
一、MPLSMPLS基于标签转发,在数据链路层及网络层之间增加MPLS头部,属于2.5层MPLS域中的相关MPLS名词1、LSR标签交换路由器,支持MPLS的路由器2、LER,MPLS边界连接其他网络的LSR设备3、区域内部LSR为核心LSR二、LSR分类1、入站(ingress)LSR:IP报文中压入MPLS头部2、中转(transit)LSR:用于MPLS标签交换,将报文继续MPLS域中转发3
- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- 【Linux | 网络】socket编程 - 使用TCP实现服务端向客户端提供简单的服务
是阿建吖!
【网络】【Linux】网络linuxtcp/ip
目录一、Comm.hpp(公共数据)二、Log.hpp(日志)三、InetAddr.hpp(管理sockaddr_in相关信息)四、NoCopy.hpp(防拷贝)五、Lockguard.hpp(自动管理锁)六、Thread.hpp(封装线程)七、ThreadPool.hpp(线程池)八、dict.txt(配置文件、简单字典)九、Translate.hpp(提供翻译服务)十、Daemon.hpp(使
- 网络安全-反弹shell详解(攻击,检测与防御)
程序员鱼
web安全网络安全单片机服务器linuxuni-app
反弹Shell:详解、攻击、检测与防御反弹Shell(ReverseShell)是一种网络安全领域中常见的攻击技术,通常用于远程控制受害者的计算机。本文旨在从网络安全的角度详细介绍反弹Shell的工作原理,实施方法以及如何检测和防御这类攻击。一、Shell的简介与原理1.1什么是Shell?Shell在计算机系统中指的是一个用户界面,用于访问操作系统的服务。在网络安全中,攻击者常利用Shell来控
- 116道网络安全面试真题(附答案),建议收藏!
程序员肉肉
web安全面试安全网络安全计算机程序员
116道网络安全面试真题(附答案),建议收藏!随着国家对网络安全的重视度,促使这个职业也变得炙手可热,越来越多的年轻人为进入安全领域在做准备。******数以百计的面试,为何迟迟无法顺利入职?********能力无疑是至关重要的,可却有不少能力不比已入职的同事差却应聘失败的人,那到底该如何做呢?为了帮助大家更快地拿到心仪Offer,我们给小伙伴们整理了一份**《网络安全工程师超高频面试真题》,结合
- 计算机网络8832号答案,2013年4月份自考试计算机网络原理04741答案.doc
2013年4月份自考试计算机网络原理04741答案全国2013年4月高等教育自学考试计算机网络原理试题课程代码:04741请考生按规定用笔将所有试题的答案涂、写在答题纸上。选择题部分1.无线应用协议WAP的特点是A.支持手机上网B.不需要基站C.基于分组交换D.无固定路由器2.智能大厦及计算机网络的信息基础设施是A.通信自动化B.楼宇自动化C.结构化综合布线D.现代通信网络3.因特网工程特别任务组
- 标题:2025传统制造业护网实战指南:从合规防御到智能免疫的体系化进阶
上海云盾商务经理杨杨
网络
引言2025年,随着《工业互联网企业网络安全》三项国家标准全面实施,护网行动已从“合规检查”升级为“能力对抗”。传统制造业在数字化转型浪潮中,面临设备老旧、人才短缺、供应链风险激增等挑战,41.5%的企业计划年内增加安全预算。本文将结合新规要求与行业最佳实践,深度解析传统制造业如何构建“技术-管理-运营”三位一体的护网防御体系。一、传统制造业的护网困境:三大核心矛盾1.设备老旧化vs安全新标准历史
- Spring Data Neo4j 与后端人工智能算法的数据交互
AI大模型应用实战
springneo4j人工智能ai
SpringDataNeo4j与后端人工智能算法的数据交互关键词:SpringDataNeo4j、图数据库、人工智能算法、数据交互、知识图谱、图神经网络、数据集成摘要:本文深入探讨了如何利用SpringDataNeo4j框架实现后端人工智能算法与图数据库的高效数据交互。文章首先介绍了图数据库和人工智能算法的基本概念,然后详细解析了SpringDataNeo4j的核心架构和原理。接着,通过实际代码示
- 【HCIA】TCP三次握手、4次断开详解
戏精亿点点菜
tcp/ip网络服务器
TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。在TCP/IP协议族中,TCP负责在两个网络实体之间建立、维护和终止连接。TCP连接的建立和终止分别通过三次握手和四次断开来完成。一、三次挥手TCP三次握手是建立TCP连接的过程,它确保了通信双方都准备好进行数据传输。过程如下:客户端->服务器:SYN,ISN=x服务器->客户端:SYN,ACK,ISN=y,ACK(x+1
- Python爬虫实战:使用最新技术爬取头条新闻数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言scrapy音视频
一、前言:Python爬虫在现代数据获取中的重要性在当今信息爆炸的时代,数据已经成为最宝贵的资源之一。作为数据获取的重要手段,网络爬虫技术在各个领域发挥着越来越重要的作用。Python凭借其简洁的语法、丰富的库生态系统和强大的社区支持,已经成为网络爬虫开发的首选语言。本文将详细介绍如何使用Python及其最新的爬虫技术来爬取头条新闻数据。我们将从基础概念讲起,逐步深入到高级技巧,最后给出完整的爬虫
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- Docker容器技术:从入门到实践
CarlowZJ
AI应用开发落地docker容器运维
目录摘要一、引言二、Docker的基本概念(一)容器与虚拟机(二)Docker的三大核心概念(三)Docker的优势三、Docker的安装与配置(一)安装Docker(二)配置Docker四、Docker镜像管理(一)拉取镜像(二)构建镜像(三)推送镜像五、Docker容器操作(一)启动容器(二)进入容器(三)停止和删除容器六、Docker网络配置(一)默认网络模式(二)自定义网络(三)主机模式(
- 数据链路层
Ragef
网络MTUARP
目录以太网以太网帧格式MTUMTU与IP、UDP\TCP的影响IPUDPTCPARP协议ARP工作流程ARP数据报的格式以太网"以太网"不是一种具体的网络,而是一种技术标准以太网是当前应用最广泛的局域网技术;和以太网并列的还有令牌环网,无线LAN等以太网帧格式帧格式如下图所示:目的地址:接收方的MAC地址,用于标识帧的目的地。源地址:发送方的MAC地址,用于标识帧的来源。类型:这个字段指示帧中封装
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- 突破性能瓶颈,几个高性能Python网络框架,高效实现网络应用
引言随着互联网和大数据时代的到来,高性能网络应用的需求日益增加。Python作为一种流行的编程语言,在高性能网络编程领域也具有广泛的应用。本文将深入探讨基于Python的几种高性能网络框架,分析它们各自的优势和适用场景,帮助开发者选择最适合自己需求的网络框架这里插播一条粉丝福利,如果你正在学习Python或者有计划学习Python,想要突破自我,对未来十分迷茫的,可以点击这里获取最新的Python
- Fiddler中文版如何提升API调试效率:本地化优势与开发者实战体验汇总
代码背锅人日志
ios小程序uni-appiphoneandroidwebviewhttps
在现代软件开发中,调试网络请求是不可或缺的一环。无论是Web前端、移动App,还是后端微服务,只要涉及到API通信,就离不开高效的抓包工具。Fiddler作为全球使用最广泛的抓包调试工具之一,凭借功能强大、灵活扩展和跨平台支持,深受开发者喜爱。而对于中文用户而言,Fiddler中文版的出现,让这款专业工具变得更加亲民、高效和易于掌握。本文将结合开发者日常使用场景,解析Fiddler中文版如何通过本
- 深入解析:v0、Cursor、Manus等AI编程助手的系统提示词、工具与模型
张道宁
人工智能
引言在当今快速发展的AI编程领域,涌现出了许多强大的AI编程助手工具,如v0、Cursor、Manus、Same.dev、Lovable、Devin和ReplitAgent等。这些工具通过智能化的代码生成、补全和优化,正在彻底改变开发者的工作流程。v0:Vercel的AIUI生成器系统提示词设计v0的系统提示词专注于将自然语言描述转换为可用的UI代码(主要是React和TailwindCSS)。其
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- Vue3面试必刷36题(2024最新版)
systemseer
面试职场和发展
文章目录一、基础概念篇1.Vue3相比Vue2有哪些重大改进?(必考!!!)2.OptionsAPIvsCompositionAPI如何选择?二、核心机制篇3.为什么Vue3用Proxy代替defineProperty?4.ref和reactive有什么区别?(高频题)三、进阶实战篇5.组件通信方式大全(超级重要)6.如何实现权限按钮控制?四、性能优化篇7.项目打包体积太大怎么破?8.长列表渲染卡
- 批量百度移动下拉词和相关搜索词挖掘
打开百度移动网页,会发现我们输入的关键词,然后会出现下拉词已经进入搜索页后会出现相关搜索词,这两部分的关键词也是非常有用的。下面就简单的介绍一下打开百度移动首页,输入关键词后,会自动出来下拉词,这部分下拉词就是需要获取的,打开f12调试工具,可以很简单的看到这是异步加载的关键词,拿到请求地址,在代码进行请求代入参数,就会获得同样的关键词结果了。这部分下拉词抓取还是比较简单的。第二部分是相关词的抓取
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- Python 通过IP地址查询地理位置
文章目录Python通过IP地址查询地理位置一、在线API查询(简单快速,依赖网络)1.**使用`requests`+ipinfo.io**2.**使用`requests`+ip-api.com**二、本地数据库查询(离线高效,需下载数据库)1.**使用`geoip2`+GeoLite2数据库**2.**其他本地库对比**️三、结果可视化(增强展示)使用`folium`生成交互地图⚖️四、方法选择
- 数字化时代练歌神器:卡拉OK点唱机应用全解析
本文还有配套的精品资源,点击获取简介:卡拉OK点唱机是一款专为音乐爱好者和练歌者设计的软件,提供网络点播、音轨分离、音调调整、评分系统、回放功能和歌词同步显示等辅助功能,帮助用户随时随地进行歌唱练习,提升演唱技巧。高级版本还提供专业音效处理功能,使得卡拉OK点唱机成为业余爱好者和专业歌手的理想训练工具。1.网络点播功能的实现与应用网络点播功能改变了我们获取媒体内容的方式,赋予了用户前所未有的主动性
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不