- Android studio 打包 uni App
前端小小小学生
uni-app前端androiduni-appandroidstudio
Androidstudio打包uniAppHBuilderX本身有原生App云打包功能,本身没什么需求可以直接使用,如果需要多次打包,云打包每次链接只能提供5次下载机会,而且要时间排队打包,所以学习了一下Androidstudio工具打包,下面是使用方法,仅供参考:1.安装Androidstudio下载Androidstudio下载地址:http://www.android-studio.org/
- Django学习笔记(第一天:Django基本知识简介与启动)
S1901
pythonDjangodjango学习笔记
博主毕业已经工作一年多了,最基本的测试工作已经完全掌握。一方面为了解决当前公司没有自动化测试平台的痛点,另一方面为了向更高级的测试架构师转型,于是重温Django的知识,用于后期搭建测试自动化平台。为什么不选择Java:Python语法简洁易读,适合快速开发。Selenium、Appium、pytest、Requests等工具对Python支持极好,且有丰富的文档和社区资源。Django简介Dja
- 位图的深入解析:从数据结构到图像处理与C++实现
Exhausted、
机器学习计算机视觉人工智能图像处理c++算法数据结构开发语言
在学习优选算法课程的时候,博主学习位运算了解到位运算的这个概念,之前没有接触过,就查找了相关的资料,丰富一下自身,当作课外知识来了解一下。位图(Bitmap)是一种用于表示图像的数据结构,它将图像分解为像素的二维网格,每个像素的颜色值存储在一个矩阵中。位图广泛应用于计算机图形学、图像处理和计算机视觉等领域。目录1.位图的基本概念1.1像素1.2分辨率1.3颜色深度2.位图的存储格式2.1BMP格式
- ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
PaLu-LvL
计算机视觉#ORB-SLAM2#局部建图线程计算机视觉人工智能c++ubuntu学习
前言该部分函数在Tracking.cc源文件中定义,用于处理图像。1.函数作用:1.GrabImageStereo函数的主要作用是处理输入的双目图像(左视图和右视图),进行必要的预处理(颜色转换),创建表示当前帧的对象,并执行跟踪操作,最后返回当前帧在世界坐标系下的变换矩阵。cv::MatTracking::GrabImageStereo(constcv::Mat&imRectLeft,const
- 深度学习视频教程推荐
yunTrans
DeepLearning深度学习视频神经网络
推荐一个深度学习视频教程,中文,推导详细。老先生娓娓道来,将神经网络、深度学习讲的非常透彻。由复旦大学吴立德老师教授的课程:http://www.youku.com/playlist_show/id_21508721.html
- 基于深度学习的商品推荐
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的商品推荐系统利用深度学习技术对用户的行为和商品的特征进行分析和建模,从而向用户推荐最相关的商品。这类系统在电子商务、社交媒体和内容推荐等领域中具有广泛应用。以下是对这一领域的系统介绍:1.任务和目标商品推荐系统的主要任务和目标包括:个性化推荐:根据用户的兴趣和行为,向用户推荐个性化的商品列表。提高用户体验:通过精准推荐,提高用户的购物体验和满意度。增加销售额:通过推荐相关商品,增加用
- Python库房管理系统开发指南
Tech Synapse
python开发语言
在现代仓储管理中,高效、准确的信息系统是提高运营效率的关键。Python作为一种强大且易于学习的编程语言,非常适合用来开发简易而功能齐全的库房管理系统。本文将详细介绍如何使用Python编写一个基本的库房管理系统,包括商品入库、出库、查询库存及生成报表等功能。通过本文,读者不仅能学习到Python编程技巧,还能理解库房管理系统的基本架构和逻辑。一、系统需求分析在开发库房管理系统之前,我们需要明确系
- 黑马苍穹外卖学习笔记
窦莎言Firm
黑马苍穹外卖学习笔记【下载地址】黑马苍穹外卖学习笔记本仓库提供了一份关于“黑马苍穹外卖”的学习笔记,由笔者在课余时间学习整理而成。笔记内容涵盖了部分源码解析、学习心得以及个人体会,旨在帮助有兴趣的读者更好地理解和掌握相关知识项目地址:https://gitcode.com/Open-source-documentation-tutorial/b7c5a资源描述本仓库提供了一份关于“黑马苍穹外卖”的
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 手把手教你Linux内核编译:从零开始编写
深度Linux
C/C++全栈开发操作系统linux内存管理内核编译
在计算机技术的广袤星空中,Linux内核宛如一颗最为璀璨而神秘的巨星,散发着无尽的魅力与诱惑。它是操作系统的心脏,掌控着计算机系统的一切核心资源与底层运作。如今,我们即将踏上一场激动人心的冒险之旅——一步步解锁Linux内核,开启从零开始的编程征程。一、简介Linux内核作为操作系统的核心,其魅力在于多方面。首先,它负责资源管理和设备驱动等重要任务。学习Linux内核编程,能够让开发者深入了解操作
- qt中文乱码
@hdd
Qt
刚开始学习qt,经常会遇到中文输出乱码,在网上找了解决办法有下面这个两个办法QTextCodec::setCodecForCStrings(QTextCodec::codecForName("GB2312"));或QTextCodec::setCodecForCStrings(QTextCodec::codecForName("UTF-8"));我试过发现不行,然后翻阅书,发现这行代码可以在主函数
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- Tenserflow学习笔记 【一:Python入门】
邪魔小屁屁
神经网络与深度学习python数据结构机器学习
Python序列数据结构初习一.前言Python的两种主要的序列数据类型二.关于序列的相关操作1.索引2.切片[开始位置:结束位置]3.获取长度len()4.添加元素①append()②insert(a,b)5.合并列表①extend()②‘+’6.删除元素del6.排序7.遍历序列8.字典①遍历②添加、修改指定元素的取值③合并字典update()④删除字典中的元素9.集合(略)总结一.前言Pyt
- 23、深度学习-自学之路-激活函数relu、tanh、sigmoid、softmax函数的正向传播和反向梯度。
小宇爱
深度学习-自学之路深度学习人工智能
在使用这个非线性激活函数的时候,其实我们重点还是学习的是他们的正向怎么传播,以及反向怎么传递的。如下图所示:第一:relu函数的正向传播函数是:当输入值(隐藏层)值大于了,就输出自己本身的值。反向梯度传播:当输出值大于0,那么反向梯度值就等于输出值乘以1如果小于0,那反向梯度值就等于0.通俗的来说就是,如果输入值是0或小于0,那么输出值的反向增强就没有。如果输入值大于0,那么输出值的方向增强就有。
- eclipse2017支持的Servlet的版本_jsp进阶(servlet篇)
weixin_39814369
Servlet篇(jsp重点)@author:杜勇帅@email:820482874@qq.com-一.Servlet基础一.Servlet概述Servlet是运行在服务器端的java程序(类),作用是接收并处理客户端的请求,生成响应给客户端。学习了Servlet后,jsp页面只负责展示数据,Servlet负责处理请求(调用Dao实现具体功能),并将数据转发到jsp页面上去展示(生成响应给客户端)
- 【学习笔记】vue-cli中组件间传参的方式
龚箭
vue.js学习笔记
一、父子组件传参首先创建子组件,子组件的名字为component1.vue接受父组件:{{name}}打印父组件的信息exportdefault{//子组件通过props组件接收,name需要和父组件的key一致props:['name'],data(){return{}},mounted(){},methods:{Forward(){console.log(this.name);},},}然后在
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- Springboot(五十)SpringBoot3集成sentinel并连接sentinel-dashboard
camellias_
springbootsentinel后端
对,你没看错,又是sentinel。我真是够了,而且,我觉得这应该不是最后一次,以后应该还会写到关于sentinel的学习记录。前边我们了解了sentinel如何使用。相对来讲还是比较简单的。之后学到自定义注解的时候,还自定义了一个sentinel注解来实现限流。用着相对来讲还是很方便的。但是呢,有一个小小的问题。官方推荐使用sentinel-dashboard,这玩意我一直没用明白。我得项目一直
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- 一、系统分析师考试介绍
Rainbow酱
系统分析系统分析软考
科目1考点考试介绍考试报名、考试科目、大纲及考点分析、证书价值、常见问题。视频课程规划、推荐资料、学习方法。计算机组成与结构数据的表示:进制转换、编码表示、逻辑运算、浮点数。校验码:奇偶校验码、循环冗余校验码、海明校验码。计算机硬件:硬件组成、CPU、寄存器等。计算机指令:寻址方式、指令流水线计算。计算机体系结构:Flynn分类,指令系统CISC和RISC。计算机存储系统:分级存储、cache、存
- 3dgs 2025 学习笔记
AI算法网奇
3d渲染学习笔记
CVPR20243D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)_cvpr2024-structure-awaresparse-viewx-ray3dreconstr-CSDN博客https://github.com/apple/ml-hugs3DGSCOLMAP-Free3DGaussianSplatting⭐codeprojectFeature3DGS
- Datawhale数学建模导论课程第八章学习心得(I)一时间序列与投资模型
星.惜尘
数学建模
学习链接:Datawhale数学建模教程Descriptionhttps://datawhalechina.github.io/intro-mathmodel/#/CH8/%E7%AC%AC8%E7%AB%A0-%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97?id=_811-%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e7%9a%84%e5%
- 政企学习考试系统(源码+文档+部署+讲解)
开源项目介绍
引言在数字化时代背景下,政企学习考试系统为企业和政府机构提供了一个高效的学习和培训环境。通过整合多种教育资源和学习工具,该平台旨在提升员工的专业技能和知识水平,促进组织的持续发展和创新。系统概述政企学习考试系统采用前后端分离的架构设计,服务端基于MySQL5.7+、JDK1.8+和Redis,前端则采用VUE2.6.14和element-ui2.15.6,并在NODE14.21.3(>=8.9)环
- 当今前沿技术大解密
火龙果wa
经验分享
虚拟现实技术在教育领域可有大作用啦!它能带来沉浸式学习,让学生仿佛身临其境。这样学生就会更投入,学习效果自然就好啦。比如说,在一些科学课程中,学生可以通过VR体验太空漫步,直观感受宇宙的奥秘。还有在历史课上,能“穿越”回古代,亲眼见证历史事件。像有个学校用VR教地理,学生们对地理知识的理解和记忆明显增强了。这种创新应用真的很棒,让学习变得有趣又高效。以后肯定会有更多学校用上VR技术,让教育变得更精
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 2024年前端最全Java进阶(五十五)-Java Lambda表达式入门_eclipse lambda(2),程序员面试技巧和注意事项
2401_84435192
程序员前端面试学习
算法冒泡排序选择排序快速排序二叉树查找:最大值、最小值、固定值二叉树遍历二叉树的最大深度给予链表中的任一节点,把它删除掉链表倒叙如何判断一个单链表有环由于篇幅限制小编,pdf文档的详解资料太全面,细节内容实在太多啦,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!如果你觉得对你有帮助,可以戳这里获取:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】"And
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的