MySQL分布式环境下生成全局自增有序ID(雪花算法Snowflake)

1 MySQL全局ID

1.1 前言

系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。

为什么需要分布式全局唯一ID以及分布式ID的业务需求
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识,如在美团点评的金融、支付、餐饮、酒店;猫眼电影等产品的系统中数据逐渐增长,对数据库分库分表后需要有一个唯一ID来标识一条数据或信息;特别的订单、骑手、优惠券都需要有唯一ID做标识
此时一个能够生成全局唯一ID的系统是非常必要的

在这里插入图片描述

1.2 ID生成要求

1.2.1 ID生成规则部分硬性要求

ID生成规则部分硬性要求:

  • 全局唯一
  • 趋势递增
    MySQLInnoDB引擎中使用的是聚集索引,由于多数RDBMS使用Btree的数据结构来存储索引,在主键的选择上面我们应该尽量使用有序的主键保证写入性能
  • 单调递增
    保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求
  • 信息安全
    如果ID是连续,恶意用户的爬取工作就非常容易做了,直接按照顺序下载指定URL即可,如果是订单号就危险了,竞争对手可以直接知道我们一天的单量,所以在一些应用场景下,需要ID无规则不规则,让竞争对手不好猜
  • 含时间戳
    一样能够快速在开发中了解这个分布式ID什么时候生成的

1.2.2 ID号生成系统可用性要求

ID号生成系统可用性要求:

  • 高可用
    发布一个获取分布式ID请求,服务器就要保证99.999%的情况下给我创建一个唯一分布式ID
  • 低延迟
    发一个获取分布式ID的请求,服务器就要快,极速
  • 高QPS
    例如并发一口气10万个创建分布式ID请求同时杀过来,服务器要顶得住且一下子成功创建10万个分布式ID

1.3 一般通用解决方案

1.3.1 UUID

1.3.1.1 使用

UUID.randomUUID(), UUID的标准型包含3216进制数字,以连字号分为五段,形式为 8-4-4-4-1236字符,性能非常高,本地生成,没有网络消耗。

1.3.1.2 存在问题

  • 入数据库性能差,因为UUID是无序的
    无序,无法预测他的生成顺序,不能生成递增有序的数字
    首先分布式id一般都会作为主键,但是按照mysql官方推荐主键尽量越短越好,UUID每一个都很长,所以不是很推荐。

  • 主键,ID作为主键时,在特定的环境下会存在一些问题
    比如做DB主键的场景下,UUID就非常不适用,MySQL官方有明确的说明

  • 索引,B+树索引的分裂
    既然分布式ID是主键,然后主键是包含索引的,而mysql的索引是通过B+树来实现的,每一次新的UUID数据的插入,为了查询的优化,都会对索引底层的B+树进行修改,因为UUID数据是无序的,所以每一次UUID数据的插入都会对主键的B+树进行很大的修改,这一点很不好,插入完全无序,不但会导致一些中间节点产生分裂,也会白白创造出很多不饱和节点,这样大大降低了数据库插入的性能。

UUID只能保证全局唯一性,不满足后面的趋势递增,单调递增

1.3.2 数据库自增主键

1.3.2.1 单机

在分布式里面,数据库的自增ID机制的主要原理是:数据库自增IDmysql数据库的replace into实现的,这里的replace intoinsert功能 类似,不同点在于:replace into首先尝试插入数据列表中,如果发现表中已经有此行数据(根据主键或唯一索引判断)则先删除,再插入,否则直接插入新数据。

REPLACE INTO的含义是插入一条记录,如果表中唯一索引的值遇到冲突,则替换老数据

在这里插入图片描述

REPLACE into t_test(stub) values('b');
select LAST_INSERT_ID();

我们每次插入的时候,发现都会把原来的数据给替换,并且ID也会增加

这就满足了:递增性、单调性、唯一性

在分布式情况下,并且并发量不多的情况,可以使用这种方案来解决,获得一个全局的唯一ID

1.3.2.2 集群分布式集群

那数据库自增ID机制适合做分布式ID吗?答案是不太适合

系统水平扩展比较困难,比如定义好步长和机器台数之后,如果要添加机器该怎么办,假设现在有一台机器发号是:1,2,3,4,5,(步长是1),这个时候需要扩容机器一台,可以这样做:把第二胎机器的初始值设置得比第一台超过很多,貌似还好,但是假设线上如果有100台机器,这个时候扩容要怎么做,简直是噩梦,所以系统水平扩展方案复杂难以实现。

数据库压力还是很大,每次获取ID都得读写一次数据库,非常影响性能,不符合分布式ID里面的延迟低高QPS的规则(在高并发下,如果都去数据库里面获取ID,那是非常影响性能的)

1.3.2.3 自增Id用完问题

我们知道MySQL表可以定义一个自增长的id,如果我们的表没有指定主键字段,那MySQL会给我们的表创建一个不可见的,长度为6个自己的row_id,然后不停地往上加步长,虽然生活中自然数是没有上限的,但是在计算机里,我们只要定义了表示这个数的字节长度,那么它就有上限,比如在Java中,int类型的上限值为,即2147483647MySQL无符号整数上限为,即4294967295
有两种情况:

  • MySQL自增id用完后,再次申请id,得到的值保持不变。插入数据会报主键冲突异常
  • MySQL InnoDB表未指定主键时,MySQL会指定一个row_id,如果row_id用完了,则会从头开始循环。从这点来说还是建议我们创建表的时候指定主键的,毕竟使用row_id会发生覆盖数据,导致原来的数据丢失,影响数据的可靠性

1.3.3 基于Redis生成全局ID策略

1.3.3.1 单机版

因为Redis单线程,天生保证原子性,可以使用原子操作INCRINCRBY来实现
INCRBY:设置增长步长

1.3.3.2 集群分布式

注意:在Redis集群情况下,同样和MySQL一样需要设置不同的增长步长,同时key一定要设置有效期,可以使用Redis集群来获取更高的吞吐量。

假设一个集群中有5台Redis,可以初始化每台Redis的值分别是 1,2,3,4,5 , 然后设置步长都是5

各个Redis生成的ID为:

A:1 6 11 16 21
B:2 7 12 17 22
C:3 8 13 18 23
D:4 9 14 19 24
E:5 10 15 20 25

但是存在的问题是,就是Redis集群的维护和保养比较麻烦,配置麻烦。因为要设置单点故障,哨兵值守

但是主要是的问题就是,为了一个ID,却需要引入整个Redis集群,有种杀鸡焉用牛刀的感觉

1.3.4 雪花算法

1.3.4.1 定义

Twitter的分布式自增ID算法,Snowflake

最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统)因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。

Twitter的分布式雪花算法SnowFlake,经测试SnowFlake每秒可以产生26万个自增可排序的ID

Snowflake有以下特点:

  • SnowFlake生成ID能够按照时间有序生成
  • SnowFlake算法生成ID的结果是一个64Bit大小的整数,为一个Long型(转换成字符串后长度最多19)
  • 分布式系统内不会产生ID碰撞(由datacenter 和 workerID做区分)并且效率较高

SnowFlake可以保证:

  • 所有生成的ID时间趋势递增
  • 整个分布式系统内不会产生重复ID,因为有datacenterIdworkerId来做区分

1.3.4.2 结构

雪花算法的几个核心组成部分


在这里插入图片描述

image.png

Java64bit的证书是long类型,所以在SnowFlake算法生成的ID就是long类存储的

  • 第一部分
    二进制中最高位符号位,1表示负数,0表示正数。生成的ID一般都是用整数,所以最高位固定为0
  • 第二部分
    第二部分是41bit时间戳位,用来记录时间戳毫秒级
    41位可以表示 2^41 -1个数字
    如果只用来表示正整数,可以表示的范围是:0 - 2^41 -1,减1是因为可以表示的数值范围是从0开始计算的,而不是从1
    也就是说41位可以表示 2^41 - 1 毫秒的值,转换成单位年则是 69.73
  • 第三部分
    第三部分为标识位5bit 数据中心 ID,5bit工作机器 ID
    可以部署在2^10 = 1024个节点
    5位可以表示的最大正整数是 2 ^ 5 = 31个数字,来表示不同的数据中心 和 机器码
    注意:这也是最容易出现重复的原因
  • 第四部分
    12位bit可以用来表示的正整数是 2^12 = 4095,即可以用0 1 2 … 4094 来表示同一个机器同一个时间戳内产生的4095ID序号

1.3.4.3 实现

雪花算法是由scala算法编写的,有人使用java实现,

/**
 * twitter的snowflake算法 -- java实现
 */
public class SnowFlake {

    /**
     * 起始的时间戳
     */
    private final static long START_STMP = 1480166465631L;

    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 12; //序列号占用的位数
    private final static long MACHINE_BIT = 5;   //机器标识占用的位数
    private final static long DATACENTER_BIT = 5;//数据中心占用的位数

    /**
     * 每一部分的最大值
     */
    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

    private long datacenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastStmp = -1L;//上一次时间戳

    public SnowFlake(long datacenterId, long machineId) {
        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
        }
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }

    /**
     * 产生下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }

        if (currStmp == lastStmp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
                | datacenterId << DATACENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }

    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }

    private long getNewstmp() {
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        SnowFlake snowFlake = new SnowFlake(2, 3);

        for (int i = 0; i < (1 << 12); i++) {
            System.out.println(snowFlake.nextId());
        }

    }
}

1.3.4.4 SpringBoot整合雪花算法

引入hutool工具类


    cn.hutool
    hutool-all
    5.3.1

整合

/**
 * 雪花算法
 */
public class SnowFlakeDemo {
    private long workerId = 0;
    private long datacenterId = 1;
    private Snowflake snowFlake = IdUtil.createSnowflake(workerId, datacenterId);

    @PostConstruct
    public void init() {
        try {
            // 将网络ip转换成long
            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 获取雪花ID
     * @return
     */
    public synchronized long snowflakeId() {
        return this.snowFlake.nextId();
    }

    public synchronized long snowflakeId(long workerId, long datacenterId) {
        Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);
        return snowflake.nextId();
    }

    public static void main(String[] args) {
        SnowFlakeDemo snowFlakeDemo = new SnowFlakeDemo();
        for (int i = 0; i < 20; i++) {
            new Thread(() -> {
                System.out.println(snowFlakeDemo.snowflakeId());
            }, String.valueOf(i)).start();
        }
    }
}
得到结果

1251350711346790400
1251350711346790402
1251350711346790401
1251350711346790403
1251350711346790405
1251350711346790404
1251350711346790406
1251350711346790407
1251350711350984704
1251350711350984706
1251350711350984705
1251350711350984707
1251350711350984708
1251350711350984709
1251350711350984710
1251350711350984711
1251350711350984712
1251350711355179008
1251350711355179009
1251350711355179010

1.3.4.5 优缺点

  • 优点
    毫秒数在高维,自增序列在低位,整个ID都是趋势递增的
    不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的
    可以根据自身业务特性分配bit位,非常灵活
  • 缺点
    依赖机器时钟,如果机器时钟回拨,会导致重复ID生成
    在单机上是递增的,但由于涉及到分布式环境,每台机器上的时钟不可能完全同步,有时候会出现不是全局递增的情况,此缺点可以认为无所谓,一般分布式ID只要求趋势递增,并不会严格要求递增,90%的需求只要求趋势递增。

其它补充
为了解决时钟回拨问题,导致ID重复,后面有人专门提出了解决的方案

  • UidGenerator - 百度开源的分布式唯一ID生成器
  • Leaf - 美团点评分布式ID生成系统

转载于:https://mp.weixin.qq.com/s/cieNogGbuRXEUk4T5KJV7A

你可能感兴趣的:(MySQL分布式环境下生成全局自增有序ID(雪花算法Snowflake))