目的
从Excel的单元格中读取数据,根据Yaw、Roll、Pitch、世界坐标、A点,通过计算出偏移后的点A',最后将结果输出在Excel的单元格中。
参考文章
在实现过程中,4*4矩阵计算参考了部分公式但是还是计算错误。后来看了Java的Matrix库以及以下链接的文章,才算出正确的结果。
- 旋转矩阵(Rotation Matrix)的推导 - 无名氏的文章 - 知乎
https://zhuanlan.zhihu.com/p/433389563
代码实现
import xlwings as xw
import math
import numpy as np
def process_data(sheet, row_number):
# 读取单元格数据
pitch_angle = sheet.range(f"A{row_number}").value
roll_angle = sheet.range(f"B{row_number}").value
avr_angle = sheet.range(f"C{row_number}").value
# 定位天线坐标
posX = sheet.range(f"E{row_number}").value # E
posY = sheet.range(f"D{row_number}").value # N
posZ = sheet.range(f"F{row_number}").value
# 需要计算的左点坐标
relativePtX_left = sheet.range(f"H{row_number}").value # E
relativePtY_left = sheet.range(f"G{row_number}").value # N
relativePtZ_left = sheet.range(f"I{row_number}").value
relativePtX_right = sheet.range(f"K{row_number}").value # E
relativePtY_right = sheet.range(f"J{row_number}").value # N
relativePtZ_right = sheet.range(f"L{row_number}").value
# 将角度转换为弧度
avr_angle = math.radians(-(avr_angle - 90))
roll_angle = math.radians(roll_angle)
pitch_angle = math.radians(pitch_angle)
pt = np.zeros(3, dtype=float)
worldPos_left = np.array([relativePtX_left - posX, relativePtY_left - posY, relativePtZ_left - posZ, 1], dtype=float)
localPos_left = np.zeros(4, dtype=float)
worldPos_right = np.array([relativePtX_right - posX, relativePtY_right - posY, relativePtZ_right - posZ, 1], dtype=float)
localPos_right = np.zeros(4, dtype=float)
mat = np.identity(4, dtype=np.float32)
# print(worldPos)
# 创建旋转矩阵
rotation_matrix_yaw = np.array([
[np.cos(avr_angle), np.sin(avr_angle), 0, 0],
[-np.sin(avr_angle), np.cos(avr_angle), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
], dtype=np.float32)
rotation_matrix_roll = np.array([
[np.cos(roll_angle), 0, -np.sin(roll_angle), 0],
[0, 1, 0, 0],
[np.sin(roll_angle), 0, np.cos(roll_angle), 0],
[0, 0, 0, 1]
], dtype=np.float32)
rotation_matrix_pitch = np.array([
[1, 0, 0, 0],
[0, np.cos(pitch_angle), np.sin(pitch_angle), 0],
[0, -np.sin(pitch_angle), np.cos(pitch_angle), 0],
[0, 0, 0, 1]
], dtype=np.float32)
# 将旋转矩阵应用到原始矩阵
mat = np.dot(rotation_matrix_yaw, mat)
mat = np.dot(rotation_matrix_roll, mat)
mat = np.dot(rotation_matrix_pitch, mat)
# 计算逆矩阵
invert = np.linalg.inv(mat)
# 计算本地坐标
localPos_left = np.dot(worldPos_left, invert)
localPos_right = np.dot(worldPos_right, invert)
# 提取结果
pt_left = localPos_left[:3]
pt_right = localPos_right[:3]
# 打印结果
# print("pt_left:", pt_left)
# print("pt_right:", pt_right)
# 将结果写回Excel
sheet.range(f"M{row_number}").value = pt_left[0]
sheet.range(f"N{row_number}").value = pt_left[1]
sheet.range(f"O{row_number}").value = pt_left[2]
sheet.range(f"P{row_number}").value = pt_right[0]
sheet.range(f"Q{row_number}").value = pt_right[1]
sheet.range(f"R{row_number}").value = pt_right[2]
sheet.range(f"T{row_number}").value = pt_left[0] + posX # E
sheet.range(f"S{row_number}").value = pt_left[1] + posY # N
sheet.range(f"U{row_number}").value = pt_left[2] + posZ
sheet.range(f"W{row_number}").value = pt_right[0] + posX # E
sheet.range(f"V{row_number}").value = pt_right[1] + posY # N
sheet.range(f"X{row_number}").value = pt_right[2] + posZ
def main():
wb = xw.Book.caller()
sheet = wb.sheets[0]
# 遍历处理多行数据,从第2行到最后一行
current_row = 2
while sheet.range(f"A{current_row}").value:
process_data(sheet, current_row)
current_row += 1
# 保存并关闭工作簿
wb.save()
if __name__ == "__main__":
xw.Book("table.xlsm").set_mock_caller()
main()