YOLOv8改进 | 主干篇 | 华为移动端模型Ghostnetv1改进特征提取网络

一、本文介绍

本文给大家带来的改进机制是华为移动端模型Ghostnetv1,华为的GhostNet是一种轻量级卷积神经网络,旨在在计算资源有限的嵌入式设备上实现高性能的图像分类。GhostNet的关键思想在于通过引入Ghost模块,以较低的计算成本增加了特征图的数量,从而提高了模型的性能。这种方法在计算资源有限的情况下,尤其适用于图像分类任务,并在一些基准测试中表现出了很好的性能。 本文将通过首先介绍其主要原理,然后手把手教大家如何使用该网络结构改进我们的特征提取网络。欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

YOLOv8改进 | 主干篇 | 华为移动端模型Ghostnetv1改进特征提取网络_第1张图片

目录

你可能感兴趣的:(YOLOv8有效涨点专栏,深度学习,人工智能,YOLO,目标检测,计算机视觉,python,pytorch)