- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- Linux系统之cal命令详解
门前灯
linux运维服务器cal
cal命令详解cal是一个用于显示日历的简单工具。默认情况下,它会显示当前月份的日历,但可以通过参数和选项显示特定月份、年份或自定义格式的日历。基本语法cal[options][[[day]month]year]无参数:显示当前月份的日历。单参数:显示指定年份的日历。双参数:显示指定月份和年份的日历。三参数:显示指定日、月和年份的日历,并在终端上高亮显示该日期。常用选项选项描述-1,--one显示
- windows使用ssh-copy-id命令的解决方案
爱编程的喵喵
Windows实用技巧windowssshssh-copy-id解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了windows使用ssh-copy-
- easyswoole学习记录
司江龙
swoolePHPeasyswooleswoole
php-fpm的工作方式php-fpm就是php-fastcgi进程管理器主要工作的就是mastr进程,主要和linux进行一个协调,当请求从nginx到fpm的时候,master会把请求交给自己下面管理的子进程一个池模型,问题:一个work进程内只会处理一个请求,也就是说这个进程内在同一时刻只会处理一个request请求,不会处理多个,所以一台服务器的并发数就取决于服务器开启了多少个work进程
- 3.无重复字符的最长字串(滑动窗口+哈希)C语言
Re_draw_debubu
哈希算法算法c语言滑动窗口
代码思路1.滑动窗口法使用滑动窗口法,通过维护一个窗口(由start_index和end定义),动态调整窗口的大小,确保窗口内的字符没有重复。2.哈希表记录字符位置使用一个数组hash_map[128]来记录每个字符最后一次出现的位置。数组大小为128,因为ASCII字符的范围是0到127。hash_map[c]表示字符c最后一次出现的位置。3.滑动窗口的维护start_index表示当前窗口的起
- DeepSpeed-Chat:Reward Model【奖励模型】
u013250861
#LLM/训练RL/强化学习排序强化学习
第二阶段:奖励模型微调奖励模型(RM)微调类似于第一阶段有监督微调(SFT)。但是,RM和SFT微调之间存在几个关键差异:训练数据差异:对于SFT微调,数据是查询(query)和答案(answer)拼接在一起。然而,对于RM微调,每批数据由两个查询-答案对组成,即具有高分答案和低分答案的相同查询。这也导致了如下所述的第二个差异。训练目标差异:对于RW,训练目标是pairwiserankingsco
- 【DeepThinking】人生反思洞察之「知行合一」(经验贴)
碣石潇湘无限路
经验分享笔记生活人生深度思考知行合一
引言最近,我深刻体会到一种焦虑:既有生活的现实压力,也有对人生方向的迷茫与无奈。回顾自身,我发现这并不是物质层面的匮乏或欲望驱动,而是对“我是谁”“我想要什么”“我能做什么”的追问。这种焦虑,常常让我想起人的出生:起初我们依赖父母和环境,被动地活着;成年后,我们凭借主动学习、工作和不断积累的信念,去实现自我价值。但终有一天,我们会停下来审视自己,看清一些本质问题,并且发觉自己需要对这一生负责:我应
- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- 六种方法教你将Python源代码打包成exe
xuefeng_210
python开发语言linux
将Python源代码打包成可执行文件(exe)是一种常见的需求,它可以使我们的程序在没有安装Python解释器的环境中运行。在本文中,我们将介绍六种常用的方法来实现这个目标,并详细说明每种方法的使用过程。cx_Freezecx_Freeze是一个用于将Python脚本打包成可执行文件的工具。它可以将Python代码和依赖的库文件一起打包,并生成一个独立的可执行文件。使用cx_Freeze的步骤如下
- 【机会约束、鲁棒优化】机会约束和鲁棒优化研究优化【ccDCOPF】研究(Matlab代码实现)
科研_G.E.M.
matlab概率论开发语言
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述机会约束、鲁棒优化与ccDCOPF研究综述1.机会约束规划(ChanceConstrainedProgramming,CCP)在电力系统中的应用2.鲁棒优化(RobustOptimization,RO)在电力系统中的应用3.机会约束与鲁棒优化的协同方法
- 基于交替方向乘法(ADMM)的PAPR约束下传输波束成形器设计的方法研究(Matlab代码实现)
创新优化代码学习
matlab前端算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码、数据、文章下载1概述上一次介绍的是用Python代码编程的,这次用Matlab代码实现。回顾见:基于交替方向乘法(ADMM)的PAPR约束下传输波束成形器设计的方法研究(Python代码实现)摘要本文研究了峰值平均功率比(
- 探索HTML5 Canvas的无限可能:一个丰富多彩的开源项目
黎情卉Desired
探索HTML5Canvas的无限可能:一个丰富多彩的开源项目去发现同类优质开源项目:https://gitcode.com/在这个充满活力的数字时代,JavaScript、HTML和CSS已经成为构建互动式网页体验的核心技术。今天,我们向您推荐一个独特而有趣的开源项目,它将这些技术结合在一起,创造出一系列生动活泼的可视化元素,包括时钟、计时器、地图、国际象棋、温度计等,让您在学习和实践中感受HTM
- 【广告架构day1】爱奇艺广告系统的演进之路:实践中的一些经验
软件真理与光
业务技术架构后端
本文来自爱奇艺的分享孙立伟。近年来爱奇艺快速发展,优质内容层出不穷,爱奇艺广告也随之发展和壮大,广告在线服务同时服务于品牌、中小、DSP等不同客户,形成了可以满足不同需求类型的较为完善的商业广告变现布局,广告库存涵盖视频、信息流、泡泡社交(爱奇艺的社交平台)和开机屏等多种场景。爱奇艺效果广告是2015年开始全新搭建的一个广告投放平台,随着信息流业务的增长,整个投放平台也经历了一次大的架构调整和多次
- 学术PPT模板_院士_国家科学技术奖_杰青基金_长江学者特聘教授_校企联聘长江_重点研发_优青_青长_青拔ppt制作案例
WordinPPT_2025
学术答辩PPTpptpowerpoint
学术PPT模板院士_国家科学技术奖_杰青基金_长江学者特聘教授_校企联聘长江_重点研发_优青_青长_青拔/杰出青年科学基金答辩PPT模板wordinppt.com/gjjq.html国自然项目。“杰青”也成为国内仅次于两院院士的第二层次高端人才,是科学领域评判创新潜力与学术水平的权威标尺。2025年起,将国家杰出青年科学基金项目更名为青年科学基金项目(A类)。/长江学者答辩PPT模板wordinp
- 软件测试基础知识必备之浅谈单元测试
程序员阿沐
软件测试软件测试单元测试
什么是单元测试?单元测试是指,对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,这里的最小可测试单元通常是指函数或者类。单元测试都是以自动化的方式执行,所以在大量回归测试的场景下更能带来高收益。单元测试代码里提供函数的使用示例,因为单元测试的具体表现形式就是对函数以各种不同输入参数组合进行调用。如何做好单元测试?1)代码的基本特征与产生错误的原因无论是开发语言还是脚本语言
- 从零开始学习黑客技术,看这一篇就够了
网络安全-旭师兄
学习web安全python密码学网络安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包黑客,对于很多人来说,是一个神秘的代名词,加之影视作品夸张的艺术表现,使得黑客这个本来只专注于技术的群体,散发出亦正亦邪的神秘色彩。黑客源自英文hacker一词,最初曾指热心于计算机技术、水平高超的电脑高手,尤其是程序设计人员,逐渐区分为白帽、灰帽、黑帽等。其中,白帽黑客被称为道德黑客。他们不会非法入侵用户网络,而是通过一系列测试检查
- css+html应用实例1:滑动门技术的简单实现
weixin_30639719
关于滑动门,现在的页面中好多地方都会用到滑动门,一般用作于导航背景,它的官方解释如下:滑动门:根据文本自适应大小,根据背景的层叠性制作,并允许他们在彼此之上进行滑动,以创造出一些特殊的效果。为什么很多人喜欢用滑动门呢,因为有些时候导航的字体长度不一致,长长短短实在不好弄背景图片之类啥的,如果单独根据不同的长度调用不同的背景图片太麻烦不说服务器压力也太大,所以滑动门技术应运而生,它可以根据元素本身的
- 112:vue+cesium 设置镜头光晕效果
还是大剑师兰特
#cesium综合教程200+大剑师cesium教程cesium示例cesium高级CesiumAPI
作者:还是大剑师兰特,曾为美国某知名大学计算机专业研究生,现为国内GIS领域高级前端工程师,CSDN知名博主,深耕openlayers、leaflet、mapbox、cesium,canvas,echarts等技术开发,欢迎加微信(gis-dajianshi),一起交流。查看本专栏目录-本文是第:112`篇文章文章目录一、示例效果图:二、示例介绍三、配置说明四、示例源代码(共171行)五、核心方法
- LInux内核学习 -- perCPU变量
lagransun
linux学习运维
文章目录环境关于perCPU变量perCPU变量:__entry_task环境linux4.19关于perCPU变量percpu变量的介绍,这位老哥做了介绍,包括为什么要有这样的变量以及优势:linux内核之Per-CPU变量,我把这个老哥的总结复制下来:通过Per-cpu变量除了可以分配内存,还有一个最大的好处就是不需要考虑同步。最好的同步技术就是把不需要同步的内核放在首位,因为每种显示的同步原
- Linux内核学习之 -- epoll()一族系统调用分析笔记
lagransun
linux学习笔记
背景linux4.19epoll()也是一种I/O多路复用的技术,但是完全不同于select()/poll()。更加高效,高效的原因其他博客也都提到了,这篇笔记主要是从源码的角度来分析一下实现过程。作为自己的学习笔记,分析都在代码注释中,后续回顾的时候看注释好一点。相关链接:Linux内核学习之–ARMv8架构的系统调用笔记Linux内核学习之–系统调用open()和write()的实现笔记Lin
- 史上最贵iPhone,苹果首款折叠iPhone预计售价超1.6万
佳晓晓
django智能手机harmonyospygamescikit-learn
史上最贵iPhone!苹果首款折叠屏手机售价超1.6万,能否颠覆折叠屏市场?一、天价折叠屏:苹果的“奢侈品”战略2025年3月,苹果首款折叠屏iPhone的定价传闻引爆科技圈。据英国巴克莱银行分析师蒂姆·龙(TimLong)预测,这款机型起售价将高达2300美元(约合人民币16637元),远超当前旗舰机型iPhone16ProMax的1199美元,成为苹果史上最贵智能手机。而供应链分析师郭明錤此前
- c++类和对象(中篇)上
朽棘不雕
c++学习c++开发语言
在上一篇博客中学习了一些类和对象的基础,下面让我们一起来看看这部分比较难以理解的重点部分吧.在中篇我主要学习了默认成员函数以及其中包含的运算符重载.在这篇中主要分享下默认成员函数的前三个.赋值函数以及其中包含的运算符重载的知识见下.类和对象的默认成员函数默认成员函数就是指在一个类中,就算用户没有显示实现,编译器也会自动生成的成员函数.在一个类中,编译器会默认生成6个成员函数.分别是构造函数,析构函
- 微软Data Formulator:用AI重塑数据可视化的未来
几道之旅
人工智能智能体及数字员工人工智能信息可视化
在数据驱动的时代,如何快速将复杂数据转化为直观的图表是每个分析师面临的挑战。微软研究院推出的开源工具DataFormulator,通过结合AI与交互式界面,重新定义了数据可视化的工作流。本文将深入解析这一工具的核心功能、安装方法及使用技巧,助你轻松驾驭数据之美。一、DataFormulator是什么?DataFormulator是一款基于大语言模型(LLM)的AI工具,旨在帮助用户通过自然语言和界
- Matplotlib 柱形图
lly202406
开发语言
Matplotlib柱形图引言在数据可视化领域,柱形图是一种非常常见且强大的图表类型。它能够帮助我们直观地比较不同类别或组之间的数据大小。Matplotlib,作为Python中最受欢迎的数据可视化库之一,提供了丰富的绘图功能,其中包括创建柱形图。本文将详细介绍Matplotlib中的柱形图,包括其基本用法、高级特性以及如何进行优化。基本用法安装Matplotlib在开始使用Matplotlib之
- Gone v2 使用 Gone Viper 组件进行本地配置
dapeng-大鹏
Gone框架介绍Gone框架配置管理Viper配置组件多格式配置文件配置自动加载机制环境变量配置覆盖层级化配置结构Go应用配置注入
发现gone-io/gone:一个优雅的Go依赖注入框架!它让您的代码更简洁、更易测试。框架轻量却功能强大,完美平衡了灵活性与易用性。⭐如果您喜欢这个项目,请给我们点个星!您的支持是我们前进的动力!欢迎贡献代码或提出建议,一起让gone变得更好!#golang#依赖注入#开源github.com/gone-io/gone本文原地址:https://github.com/gone-io/goner
- DataGridView使用方法汇总
weixin_33933118
操作系统数据库ui
DataGridView控件DataGridView是用于WindowsFroms2.0的新网格控件。它能够代替先前版本号中DataGrid控件,它易于使用并高度可定制,支持许多我们的用户须要的特性。关于本文档:本文档不准备面面俱到地介绍DataGridView,而是着眼于深入地介绍一些技术点的高级特性。本文档按逻辑分为5个章节,首先是结构和特性的概览,其次是内置的列/单元格类型的介绍,再次是数据
- 蒙特卡罗树搜索算法依赖游戏树,也就是游戏的状态空间和可选动作的构成。游戏树是游戏设计者为了实现对战或博弈的目的
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介20世纪末到21世纪初,计算机科学和互联网科技迅速发展。在这些新兴领域中,蒙特卡罗方法是一个显著的研究热点。蒙特卡罗方法源自物理学和数学领域,其目的是模拟物理系统的随机运动,从而解决很多数学、物理等领域的问题。蒙特卡loor方法被广泛应用于各类模拟、预测、优化、控制等领域。在计算机领域,蒙特卡罗方法也扮演了重要角色。现如今,计算性能已经足够强大,人们可以轻松地进
- 【AI大模型应用开发】【RAG评估】0. 综述:一文了解RAG评估方法、工具与指标
同学小张
大模型人工智能笔记经验分享gptagiAIGC
大家好,我是同学小张,日常分享AI知识和实战案例欢迎点赞+关注,持续学习,持续干货输出。+v:jasper_8017一起交流,一起进步。微信公众号也可搜【同学小张】本站文章一览:前面我们学习了RAG的基本框架并进行了实践,我们也知道使用它的目的是为了改善大模型在一些方面的不足:如训练数据不全、无垂直领域数据、容易出现幻觉等。那么如何评估RAG的效果呢?本文我们来了解一下。文章目录推荐前置阅读0.R
- 清晰架构之typescript实践:构建可扩展服务的利器
吕曦耘George
清晰架构之typescript实践:构建可扩展服务的利器react-with-clean-architectureCleanarchitecturebasedreactprojectsamplecode.项目地址:https://gitcode.com/gh_mirrors/re/react-with-clean-architecture在软件开发的浩瀚宇宙中,找到一个既能维持代码的清晰度又能确保
- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理