- yolo是什么,有什么优缺点以及YOLO的应用场景?
cesske
YOLO
目录前言一、yolo是什么?二、YOLO的优点三、YOLO的缺点四、YOLO的应用场景总结前言这里我们来讲一下yolo是什么,有什么优缺点?一、yolo是什么?“YOLO”在计算机视觉和深度学习领域是一个特定的算法框架,全称是“YouOnlyLookOnce”。这个算法最初由JosephRedmon、SantoshDivvala、RossGirshick和AliFarhadi在2015年提出,旨在
- YOLOv10改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv10的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv10的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。
- YOLOv10改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文将HS-FPN结构融入YOLOv10以优化目标检测网络模型。HS-FPN借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。在YOLOv10中应用HS-FPN时,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,显著提升YOLOv10在各项检测任务中的准确性与稳定性。专栏目录:YOLOv10改进目
- 基于 YOLOv8+PyQt5 的无人机红外目标检测系统:开启智能监测新时代
人工智能教学实践
人工智能YOLOqt无人机
基于YOLOv8+PyQt5的无人机红外目标检测系统:开启智能监测新时代【毕业与课程大作业参考】基于yolov8+pyqt5界面自适应的无人机红外目标检测系统demo.zip资源-CSDN文库在科技飞速发展的今天,无人机技术在各个领域的应用越来越广泛。为了提升无人机在复杂环境下的目标检测能力,结合先进的深度学习算法和图形用户界面开发技术,打造功能强大的无人机红外目标检测系统成为了研究热点。本文将详
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 室内家具检测数据集VOC+YOLO格式7928张10类别
FL1623863129
数据集深度学习机器学习人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):7928标注数量(xml文件个数):7928标注数量(txt文件个数):7928标注类别数:10标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Bed","Bo
- 【YOLO11改进 - Backbone主干】LSKNet:旋转目标检测新网络,通过DW卷积核和空间选择机制来动态调整目标的感受野
YOLO大师
目标检测网络人工智能yolov11YOLOpython计算机视觉
YOLOv11目标检测创新改进与实战案例专栏文章目录:YOLOv11创新改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv11目标检测创新改进与实战案例文章目录YOLOv11目标检测创新改进与实战案例专栏介绍摘要创新点文章链接基本原理**LSKNet的结构**3.2大核卷积3.3空间核选择核心代码YOLO11引入代码tasks注册步骤1
- YOLOv10改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文记录的是利用大核选择模块LSK优化YOLOv10的目标检测网络模型。在大尺寸图像中的小目标检测任务中,一直是个难题,无法仅基于外观实现较好的识别,因此需要广泛的上下文信息进行辅助。但不同物体所需的上下文信息范围不同,为了更好地对这些特性进行建模,本文利用大核选择模块二次创新C3k2,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中
- YOLOv10改进,YOLOv10检测头融合DynamicHead,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能深度学习计算机视觉
摘要作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别×空间×通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自注意力机制的构建。然而,直接在所有维度上学习注意力函数过于困难,且计算成本过高。因此,作者提出通过分别在特征的每个特定维度上部署注意力机制,即在级
- 用engine引擎文件在Jetson上面进行推理(YOLOv8)
薇憨
深度学习-硬件篇YOLOpythonpycharm深度学习pytorch嵌入式硬件
1.pt文件,推理在Jetson上可以通过predict.py脚本用.pt权重文件进行推理脚本如下:importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#selectyourmodel.ptpathmodel.pred
- 通过TenSorRT转换后的engine引擎文件进行验证的脚本
薇憨
深度学习-硬件篇嵌入式硬件mcupython
YOLOv8算法验证pt文件的精度脚本一般都很常见,工程项目里面一般会有importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#权重文件路径model.val(data='/data.yaml',#yaml文件路径spl
- yolov8使用Python训练识别
枫林古月
YOLO从零开始YOLOpython开发语言
环境要求:根据《yolov8训练环境搭建》搭建好运行环境参考文献:1、yolo官方文档python版本:https://docs.ultralytics.com/usage/python/2、github文档https://github.com/ultralytics/ultralytics/blob/main/README.zh-CN.md3、标定源数据的生成使用labelImg来标定类别,输出
- YOLOv10-1.1部分代码阅读笔记-tasks.py
红色的山茶花
YOLO笔记深度学习
tasks.pyultralytics\nn\tasks.py目录tasks.py1.所需的库和模块2.classBaseModel(nn.Module):3.classDetectionModel(BaseModel):4.classOBBModel(DetectionModel):5.classSegmentationModel(DetectionModel):6.classPoseModel
- YOLOv10-1.1部分代码阅读笔记-checks.py
红色的山茶花
YOLO笔记深度学习
checks.pyultralytics\utils\checks.py目录checks.py1.所需的库和模块2.defparse_requirements(file_path=ROOT.parent/"requirements.txt",package=""):3.defparse_version(version="0.0.0")->tuple:4.defis_ascii(s)->bool:5
- YOLOv10-1.1部分代码阅读笔记-loss.py
红色的山茶花
YOLO笔记深度学习
loss.pyultralytics\utils\loss.py目录loss.py1.所需的库和模块2.classVarifocalLoss(nn.Module):3.classFocalLoss(nn.Module):4.classBboxLoss(nn.Module):5.classRotatedBboxLoss(BboxLoss):6.classKeypointLoss(nn.Module)
- YOLOv9-0.1部分代码阅读笔记-common.py
红色的山茶花
笔记
common.pymodels\common.py目录common.py1.所需的库和模块2.defautopad(k,p=None,d=1):3.classConv(nn.Module):4.classAConv(nn.Module):5.classADown(nn.Module):6.classRepConvN(nn.Module):7.classSP(nn.Module):8.classMP
- YOLOv7-0.1部分代码阅读笔记-common.py
红色的山茶花
YOLO笔记
common.pymodels\common.py目录common.py1.所需的库和模块2.defautopad(k,p=None):3.classMP(nn.Module):4.classSP(nn.Module):5.classReOrg(nn.Module):6.classConcat(nn.Module):7.classChuncat(nn.Module):8.classShortcut
- YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py
红色的山茶花
YOLO笔记深度学习
block.pyultralytics\nn\modules\block.py目录block.py1.所需的库和模块2.classDFL(nn.Module):3.classProto(nn.Module):4.classHGStem(nn.Module):5.classHGBlock(nn.Module):6.classSPP(nn.Module):7.classSPPF(nn.Module):
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- YOLOv10:面向下一代目标检测模型的创新探索
AgriTube
YOLO
随着计算机视觉技术的飞速发展,目标检测模型在各类应用场景中的重要性与日俱增。从自动驾驶到智能监控,目标检测的准确性和实时性都直接影响着应用的效果和用户体验。YOLO(YouOnlyLookOnce)系列作为实时目标检测的代表性模型,自发布以来便因其速度与精度的平衡性得到了广泛关注和应用。如今,随着YOLOv10的即将推出,我们站在技术的前沿,思考如何对这一模型进行革新,使其在面对复杂多变的场景时表
- YOLOv5:目标检测新星,解锁高性能实时识别
殷连靖Harlan
YOLOv5:目标检测新星,解锁高性能实时识别【下载地址】yolov5改进策略案例分析资源合集YOLOv5,作为目标检测领域的一颗明星,基于经典的YOLOv4算法进行了一系列创新性优化,显著提升了检测速度与精度。本资源集合深入解析YOLOv5的设计理念与技术细节,旨在帮助开发者和研究者更全面地理解并应用这些进步。从数据预处理到网络架构设计,再到后处理策略,我们逐一探讨其核心改进之处项目地址:htt
- YOLO系列之训练环境(GPU)搭建篇
w94ghz
YOLO改进系列YOLOv8改进系列YOLO深度学习人工智能python目标检测
YOLOv8专栏导航:点击此处跳转Pytorch环境配置(Windows)Anaconda安装此处下载安装即可⭐温馨提示:安装路径
- YOLOv10改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)
Limiiiing
YOLOv10改进专栏YOLO目标跟踪计算机视觉深度学习
一、本文介绍本文记录的是基于EMA模块的YOLOv10目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv10的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF
- 基于YOLOv11无人机视角船舶检测系统:项目概述与技术实现
qq1309399183
计算机视觉实战项目集合YOLO无人机人工智能计算机视觉无人机视角船舶检测yolo11改进yolo11涨点
文章目录YOLOv11无人机视角船舶检测系统:项目概述与技术实现项目背景项目简介核心目标YOLOv11的技术优势1.**更强的特征提取能力**2.**改进的多尺度检测**3.**轻量化设计**4.**实时处理能力**数据准备与模型训练1.**数据集构建**2.**模型训练**系统功能与使用方法1.**实时目标检测**2.**静态图片检测**3.**视频文件处理**4.**多种目标类别支持**安装与
- 探索高效嵌入式视觉应用:RK3588/RK3568/RK3566 Linux QT Opencv NPU YoloV5摄像头实时检测系统...
陆依嫣
探索高效嵌入式视觉应用:RK3588/RK3568/RK3566LinuxQTOpencvNPUYoloV5摄像头实时检测系统rk_yolov5.zip项目地址:https://gitcode.com/open-source-toolkit/f6845项目介绍在智能安防、机器人视觉等需要高性能图像处理和实时监控的应用场景中,RockchipRK3588、RK3568和RK3566处理器凭借其强大的
- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- yolov11网页版2.0(附源码+响应式)
Pan_peter
PythonYOLO网页端预测系统目标检测
演示视频:(功能演示)yolov11网页版2.0(附源码+响应式)_哔哩哔哩_bilibili项目链接:https://blog.csdn.net/Pan_peter/article/details/145130452,视频播放量0、弹幕量0、点赞数0、投硬币枚数0、收藏人数0、转发人数0,视频作者电石QwQ,作者简介不甘寂寞,相关视频:1.14全新!!【RVC变声器】无需声卡!0延迟!支持ios
- COCO8 数据集上训练 YOLO11n:从入门到跑路(100 轮训练实战)
星际编程喵
Python探索之旅目标跟踪人工智能计算机视觉机器学习
前言训练YOLO11n,听起来就像是给赛博世界的“战斗天使”装上双核发动机,而COCO8数据集,则是那个小小的试验场。今天,我们就要在这个数据集上训练YOLO11n模型100轮,见证它如何从一个懵懂的“AI萌新”成长为“目标检测大佬”。本篇文章将以专业又幽默的方式,带你深入了解训练流程,并提供完整代码示例,让你轻松掌握这项技术。简介YOLO(YouOnlyLookOnce)是目标检测领域的明星模型
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后