- 188.HarmonyOS NEXT系列教程之列表切换案例工具类与最佳实践
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT系列教程之列表切换案例工具类与最佳实践效果演示1.日志工具类1.1Logger类实现classLogger{privatedomain:number;privateprefix:string;privateformat:string='
- 六十天前端强化训练之第二十九天之深入解析:从零构建企业级Vue项目的完整指南
编程星辰海
#前端前端Vue项目
=====欢迎来到编程星辰海的博客讲解======看完可以给一个免费的三连吗,谢谢大佬!目录一、Vite核心原理与开发优势二、项目创建深度解析三、配置体系深度剖析四、企业级项目架构设计五、性能优化实战六、开发提效技巧七、质量保障体系八、扩展阅读推荐一、Vite核心原理与开发优势1.1为什么选择Vite?Vite采用现代浏览器原生ES模块系统(NativeESM)作为开发服务器,颠覆了传统打包工具的
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【论文阅读】实时全能分割模型
万里守约
论文阅读论文阅读图像分割图像处理计算机视觉
文章目录导言1、论文简介2、论文主要方法3、论文针对的问题4、论文创新点总结导言在最近的计算机视觉领域,针对实时多任务分割的需求日益增长,特别是在交互式分割、全景分割和视频实例分割等多种应用场景中。为了解决这些挑战,本文介绍了一种新方法——RMP-SAM(Real-TimeMulti-PurposeSegmentAnything),旨在实现实时的多功能分割。RMP-SAM结合了动态卷积与高效的模型
- Docker之安装与配置
雨五夜
Dockerdocker容器运维
Docker之安装与配置一、Docker环境配置1.基本配置2.镜像加速3.网络配置4.数据持久化5.优化建议6.常见问题与解决方案7.补充工具二、Docker配置本地仓库指南1.拉取Registry镜像2.启动本地仓库3.配置Docker客户端Linux/macOSWindows4.推送镜像到本地仓库标记镜像推送镜像5.推送镜像到本地仓库6.管理本地仓库7.优化与安全性8.常见问题一、Docke
- 【笔记】扩散模型(五):Classifier-Free Guidance 理论推导与代码实现
LittleNyima
DiffusionModels笔记机器学习深度学习
论文链接:Classifier-FreeDiffusionGuidance上一篇文章我们学习了ClassifierGuidance,这种方法通过引入一个额外的分类器,使用梯度引导的方式成功地实现了条件生成。虽然ClassifierGuidance可以直接复用训练好的diffusionmodels,不过这种方法的问题是很明显的,首先需要额外训练一个分类器,而且这个分类器不仅仅分类一般的图像,还需要分
- 动态规划-01背包
ん贤
算法动态规划算法
兜兜转转了半天,发现还是Carl写的好。看过动态规划-基础的读者,大概都清楚。动态规划是将大问题,分解成子问题。并将子问题的解储存下来,避免重复计算。而背包问题,就是动态规划延申出来的一个大类。而01背包,就隶属于背包问题。那什么又是01背包呢?01背包有n件物品,与一次最多能背w重量的背包。第i件物品,重量为weight[i],得到的价值为value[i]。每件物品只能用一次,求解,将那些物品装
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- 金鼎量化助手中的板块与成份股如何实时联动以及股票代码与股软联动
wxqq_541182238
金鼎量化助手经验分享笔记其他人工智能
在专栏之前的文章中有介绍板块强度的作用,使用了哪些参考指标等,下面介绍金鼎量化助手板块强度页面中的板块与成份个股的联动以及如何实现个股与股软:如同花顺、通达信之间的联动。通过股票代码直接联动到股软快速查看。一、板块强度与成份股的关联在金鼎量化助手的板块强度页面中分了两列,第一列是板块,第二列是板块对应的成份股,每天打开软件后会实时获取到板块的最新强度排名情况(需保证勾选上实时刷新选项框),板块列表
- 北单109 德国 vs 意大利
weixin_66725336
后端
北单109德国vs意大利两强对攻激战可期进球大战一触即发阵容动态德国:上轮欧国联客场采用「4-2-3-1」阵型,朱利安·布兰特顶替受伤的凯·哈弗茨出任单箭头,穆西亚拉、萨内与阿米里组成前场攻击群。尽管开场先失一球,但球队通过凯文·丹斯特(替补登场后迅速破门)和格雷茨卡的制胜球完成逆转。本轮莱昂·格雷茨卡和卡里姆·阿德耶米有望轮换首发,门将奥利弗·鲍曼继续镇守球门。意大利:上轮主场以「3-5-2」阵
- 最新智能优化算法: 贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)求解23个经典函数测试集,MATLAB代码
IT猿手
MATLAB智能优化算法算法matlab开发语言人工智能智能优化算法
一、贪婪个体优化算法贪婪个体优化算法(GreedyManOptimizationAlgorithm,GMOA)是HamedNozari与HosseinAbdi于2024年提出的一种新型受生物启发的元启发式算法,它模拟了抵抗变化的竞争个体的行为。GMOA引入了两个独特的机制:MMO抵抗机制,防止过早替换解;周期性寄生虫清除机制,促进多样性并避免停滞。该算法旨在解决传统优化算法中的过早收敛和缺乏多样性
- Python读取.nc文件的方法与技术详解
傻啦嘿哟
关于python那些事儿人工智能前端服务器
目录一、引言二、使用netCDF4库读取.nc文件安装netCDF4库导入netCDF4库打开.nc文件获取变量读取变量数据案例与代码三、使用xarray库读取.nc文件安装xarray库导入xarray库打开.nc文件访问变量数据案例与代码四、性能与优化分块读取使用Dask进行并行计算减少不必要的变量加载五、其他注意事项文件路径变量命名数据类型文件关闭六、总结一、引言.nc文件,即NetCDF(
- 架构师必知必会系列:数据架构与数据管理
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍数据架构与数据管理介绍数据架构是指用来定义企业数据的逻辑结构、物理存储结构和数据的流转过程。它由数据中心和IT平台、数据库、文件系统、网络、安全、计算资源等构成。其目的是为了满足业务需求、提升组织效率和降低成本。数据架构包括数据字典、元数据、数据模型、数据流、数据仓库、数据管道、数据服务等。在应用中,将数据按照其自身特性进行划分、分类、归档、清洗和加工,才能
- 中国大陆网站用了lightHouse之后还有必要用WebPageTest么?
混血哲谈
网络
对于中国大陆的网站,即使已使用Lighthouse进行性能优化,WebPageTest仍有不可替代的价值。两者并非互斥,而是互补工具,适用于不同维度的性能分析。以下是具体原因和场景说明:一、核心结论:Lighthouse与WebPageTest的定位差异工具核心价值适用场景中国大陆场景的局限性Lighthouse提供代码级优化建议(如压缩资源、渲染阻塞修复)本地开发调试、快速生成优化清单仅反映本地
- 2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享
摘要随着智能优化算法的不断发展,解决高维、复杂的优化问题已成为研究的重要课题。雪雁算法(SnowGeeseAlgorithm,SGA)作为一种新兴的自然启发式优化算法,以其高效的全局搜索能力受到了广泛关注。然而,雪雁算法在处理多峰、多约束和高维复杂问题时,仍面临收敛速度较慢和易陷入局部最优解的问题。为此,本文提出了一种改进型雪雁算法(ISGA),通过引入自适应权重调整机制和混合局部搜索策略,增强了
- 代码随想录算法训练营Day10 | Leetcode 150逆波兰表达式求值、239滑动窗口最大值、 347前 K 个高频元素
Dominic_Holmes
leetcodepython算法数据结构
代码随想录算法训练营Day10|Leetcode150逆波兰表达式求值、239滑动窗口最大值、347前K个高频元素一、反转字符串相关题目:Leetcode150文档讲解:Leetcode150视频讲解:Leetcode1501.Leetcode150.逆波兰表达式求值给你一个字符串数组tokens,表示一个根据逆波兰表示法表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。注意:有效的
- 23、nc文件快速切片与索引
爱转呼啦圈的小兔子
气象数据处理与可视化python气象气象可视化气候变化
1前言在气象、海洋学和环境科学等领域,.nc(NetCDF)格式文件是存储和共享多维科学数据的常用格式。这些数据文件通常包含大量的经度、纬度、时间和垂直层次数据。在处理这些数据时,研究人员常常需要根据特定的地理和时间范围提取数据,以便进行深入分析。为此,我们开发了一个名为nc_slice的Python函数,用于从一个或多个.nc格式文件中高效地筛选和提取数据。nc_slice函数提供了一种简洁而灵
- HTTP核心知识
Sean2077
HTTPhttp
理解HTTP协议是优化Web应用性能、调试问题和实现高效通信的基础。以下是前端开发者需要掌握的核心HTTP知识:1.HTTP基础概念请求与响应模型理解客户端(浏览器)发送HTTP请求,服务器返回HTTP响应的基本流程。HTTP方法(Methods)GET:获取资源(幂等操作)POST:提交数据(非幂等)PUT:更新资源DELETE:删除资源HEAD:仅获取响应头OPTIONS:查看服务器支持的通信
- 秒开WebView Android性能优化全攻略:深度解析与实战策略
俊星学长
android性能优化
秒开WebViewAndroid性能优化全攻略:深度解析与实战策略在Android开发中,WebView作为一个重要的组件,用于在应用中嵌入和展示网页内容。然而,WebView的性能往往成为影响用户体验的关键因素之一。实现WebView的“秒开”体验,不仅需要开发者对WebView的工作机制有深入的理解,还需要掌握一系列性能优化策略。本文将从多个维度深入探讨AndroidWebView的性能优化,
- JavaScript 性能优化实战:优化循环结构提升效率
deying0865423
javascript开发语言
目录一、理解循环的性能损耗二、减少循环迭代次数(一)缓存数组长度(二)提前终止循环三、优化循环内部操作(一)避免在循环内执行复杂计算(二)减少DOM操作四、选择合适的循环类型(一)for循环与while循环的选择(二)for...in与for...of的使用场景在JavaScript编程中,循环结构是实现重复执行任务的基础工具。然而,不当的循环使用常常会导致性能瓶颈,特别是在处理大量数据时,循环的
- SAP-ABAP:ABAP内存使用详细说明
爱喝水的鱼丶
ABAP开发之必须知道的VIP详情查看专栏SAP-ABAP开发基础详解SAP运维ABAP开发语言ERP
在SAPABAP中,ABAP内存(ABAPMemory)是一种临时存储机制,用于在同一内部会话(InternalSession)中共享数据。ABAP内存的数据生命周期与当前程序及其调用的子程序相关,程序结束后数据会自动清除。以下是关于ABAP内存的详细说明:—##1.ABAP内存的特点-作用范围:仅在当前内部会话中有效。-生命周期:数据在当前程序及其调用的子程序中有效,程序结束后数据丢失。-共享范
- LeetCode算法题(Go语言实现)_07
LuckyLay
Golang学习笔记算法leetcode职场和发展golang
题目给你一个整数数组nums,返回数组answer,其中answer[i]等于nums中除nums[i]之外其余各元素的乘积。题目数据保证数组nums之中任意元素的全部前缀元素和后缀的乘积都在32位整数范围内。请不要使用除法,且在O(n)时间复杂度内完成此题。一、代码实现funcproductExceptSelf(nums[]int)[]int{n:=len(nums)answer:=make([
- 2025年入职/转行网络安全,该如何规划?网络安全职业规划
教网络安全的毛老师
web安全安全网络运维云计算
网络安全是一个日益增长的行业,对于打算进入或转行进入该领域的人来说,制定一个清晰且系统的职业规划非常重要。2025年,网络安全领域将继续发展并面临新的挑战,包括不断变化的技术、法规要求以及日益复杂的威胁环境。以下是一个关于网络安全职业规划的详细指南,涵盖了从入门到高级岗位的成长路径、技能要求、资源获取等方面的内容。第一部分:网络安全行业概述1.1网络安全的现状与未来网络安全已经成为全球企业和政府的
- 2025年入职/转行网络安全,该如何规划?网络安全职业规划
教网络安全的毛老师
web安全安全网络安全渗透测试漏洞挖掘
网络安全是一个日益增长的行业,对于打算进入或转行进入该领域的人来说,制定一个清晰且系统的职业规划非常重要。2025年,网络安全领域将继续发展并面临新的挑战,包括不断变化的技术、法规要求以及日益复杂的威胁环境。以下是一个关于网络安全职业规划的详细指南,涵盖了从入门到高级岗位的成长路径、技能要求、资源获取等方面的内容。第一部分:网络安全行业概述1.1网络安全的现状与未来网络安全已经成为全球企业和政府的
- 网络空间安全专业发展历程及开设院校
菜根Sec
安全网络安全网络安全高校网络空间安全信息安全
一、专业发展历程1.早期探索阶段(1990年代末—2000年代初)(1)背景:1990年代互联网进入中国,计算机病毒、黑客攻击等问题逐渐显现,社会对信息安全人才的需求开始萌芽。(2)高校尝试:1997年,西安电子科技大学在密码学领域积累深厚,率先开设与信息安全相关的选修课程和研究方向。1998年,武汉大学依托其计算机学院和数学学科优势,开始探索信息安全方向的本科教育。2.正式设立本科专业(2001
- 开发者必看!添加 RTT 功能的详细指南
WPG大大通
NXP产线大大通RTT调试工程笔记经验分享
SEGGERRTT(Real-TimeTransfer)是一种高效的实时调试技术,通过J-Link调试器实现主机与目标设备间的双向通信。相比传统调试手段(如串口),RTT无需额外硬件引脚,且传输速度更快,特别适合资源受限的嵌入式场景。本文以NXPKW38芯片为例,详细介绍如何将SEGGERRTT功能集成到SDK工程中,助力开发者快速捕获调试信息。一、准备工作1.安装J-Link软件包确保已安装SE
- 嵌入式Linux驱动开发:从基础知识到实践精通
坚持坚持那些年
本文还有配套的精品资源,点击获取简介:嵌入式Linux由于其稳定性、可定制性和丰富资源,在智能设备领域得到广泛应用。掌握嵌入式Linux驱动程序设计对于开发者至关重要。本课程从基础知识点出发,详细介绍了内核接口理解、设备树编程、I/O操作、字符与块设备驱动、网络驱动、电源管理、调试技巧、硬件抽象层、设备模型和模块化编程等关键技能,并通过实际操作实践来强化学习,帮助开发者成长为嵌入式Linux驱动开
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那