- 我与DeepSeek的深度实践:重新定义智能编程的边界
一叶孤舟111
python人工智能
引言:从质疑到依赖的认知跃迁在ChatGPT掀起AI编程革命之初,我曾对代码生成工具持保留态度。直到2023年接触DeepSeek,这个来自中国的AI编程助手彻底改变了我的开发模式。经过200+小时的深度使用,我在实际项目中验证了其惊人潜力,本文将分享最具实践价值的经验总结。一、效率革命:实测数据背后的生产力跃升1.1代码生成效率对比任务类型传统耗时DeepSeek耗时准确率CRUD接口开发2.5
- python 支持向量机回归_深入浅出python机器学习---支持向量机SVM 笔记0114-2020
weixin_39864387
python支持向量机回归
题前故事:小D最近也交了一个女朋友,但是这个女孩好像非常情绪化,喜怒无常,让小D捉摸不透,小D女朋友的情绪完全不是“线性可分”的,于是小D想到了SVM算法,也就是大名鼎鼎的一一支持向量机。支持向量机理解引入首先需要知道线性可分和线性不可分的概念我们提取样本特征是“是否有妹子”和“是否有好吃的”这两项的时候,能够很容易用图中的直线把男生的情绪分成“开心”和“不开心”两类,这种情况下我们说样本是线性可
- 比特币,区块链及相关概念简介(一)
湖光秋色
区块链区块链比特币去中心化
目录什么是比特币比特币用来交易什么呢应用场景和黄金的关系相似之处:不同之处:如果是交易才会有比特币奖励那第一个持有者是怎么获取的呢又是怎么交易的呢其他加密货币该系列文章链接以下内容结合了chatgpt3.5以及网络文章。用于学习记录。简介:介绍了比特币的概念,比特币的交易对象,比特币的应用场景,以及和黄金的关系;其他加密货币等。什么是比特币比特币是一种数字货币,也是全球第一个去中心化的加密货币。它
- Process-based Self-Rewarding Language Models 论文简介
ZHOU_CAMP
deepseekrelated论文人工智能深度学习
基于过程的自奖励语言模型:LLM优化的新范式引言大型语言模型(LLM)在多种任务中展现出了强大的能力,尤其是在使用人工标注的偏好数据进行训练时。然而,传统的自奖励范式在数学推理任务中存在局限性,甚至可能在迭代训练中导致模型性能下降。为了解决这些问题,论文《Process-basedSelf-RewardingLanguageModels》提出了一种新的框架,该框架结合了长链推理、逐步LLM评判(L
- 互联网晚报 | 10月6日 星期三 | 微软正式推送Windows 11;网易严选西南首店落地成都;2021年诺贝尔物理学奖揭晓...
「已注销」
区块链微软iot比特币物联网
今日看点✦2021年诺贝尔物理学奖揭晓,授予3位“复杂物理系统”研究者✦淘宝直播发布“超级种草官计划”,千万奖金、亿级流量奖励招募短视频种草达人✦网易严选西南首店落地成都,为新中产打造高品质生活方式✦电影《长津湖》成影史国庆档票房冠军,超过《我和我的祖国》✦积极推行驾驶证电子化,全国已发放1300多万个电子驾驶证✦微软正式推送Windows11系统,符合条件的Win10用户可免费升级国内要闻1、微
- 2025年全国各省市专精特新补贴奖励政策全解析及申报流程总结!中小企业收藏!
wotao19855108117
创业创新
2025年,全国各省市专精特新奖励补贴政策新鲜出炉!需注意,政策处于动态调整中,实际情况务必参照当地相关部门的最新公告哦。(专注企业规划申报13年!)一、国家层面一旦被认定为国家级专精特新“小巨人”企业,即可收获一次性600万元/家的奖励,并且每年还能额外获得200万元奖励,助力企业一路“狂飙”。二、北京荣获国家级专精特新“小巨人”企业称号的,可领取一次性30-50万元的奖励金,这可是对企业实力的
- 2025年西安各行业企业奖励补贴政策和西安区县申报奖补项目条件
WOTAO15656016356
经验分享科技
2025年西安市政府补贴政策及12条各类常规政策申报奖补根据2025年西安市及各区的政策文件,以下是各行业企业奖励补贴政策及区县申报条件的分类整理:一、西安鼓励科技创新与新兴产业奖励政策西安市新城区、碑林区、莲湖区、灞桥区、未央区、雁塔区、阎良区、临潼区、长安区、高陵区、鄠邑区企业如果有想要申报的奖补政策,可以参考LIANXI。1.西安高新技术企业培育首次认定国家高新技术企业:奖励20万元,重新认
- 【人工智能】大模型的Scaling Laws(缩放定律),通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。
本本本添哥
013-AIGC人工智能大模型人工智能深度学习机器学习
缩放定律(ScalingLaws)是人工智能领域中关于大模型性能提升的重要理论,其核心思想是通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。这一理论最早由OpenAI在2020年提出,并在随后的研究中得到了广泛验证和应用。ScalingLaws就像是指导手册一样,告诉我们在构建和训练AI模型时应该注意什么,以最经济有效的方式得到最好的成果。这有助于推动技术进步的同时也促进了可持
- python智慧树章节测试答案_知到智慧树_Python程序设计基础_答案章节单元测试答案...
五彩夏天
python智慧树章节测试答案
【单选题】下列哪项不是急性龋的特点A.病变进展快B.质地软而湿C.多见于儿童及青年D.去腐必须用高速机钻E.病变组织颜色浅【单选题】危险环境下使用的手持电动工具的安全电压为()A.9VB.12VC.24VD.36V【多选题】供应链合作伙伴之间如何防范合作风险()A.建立信任机制,培养企业间的信任B.动态合同控制C.建立有效地激励和利益分配机制D.构建和谐人才团队【判断题】牙震荡是牙周膜受外力作用后
- NO2.C++语言基础|C++和Java|常量|重载重写重定义|构造函数|强制转换|指针和引用|野指针和悬空指针|const修饰指针|函数指针(C++)
ChoSeitaku
春招面试冲刺c++开发语言
6.C++和Java区别(语⾔特性,垃圾回收,应⽤场景等)指针:Java语⾔让程序员没法找到指针来直接访问内存,没有指针的概念,并有内存的⾃动管理功能,从⽽有效的防⽌了C++语⾔中的指针操作失误的影响。但并⾮Java中没有指针,Java虚拟机内部中还是⽤了指针,保证了Java程序的安全。多重继承:C++⽀持多重继承但Java不⽀持,但⽀持⼀个类继承多个接⼝,实现C++中多重继承的功能,⼜避免了C+
- 家政保洁维修行业有没有必要做小程序?
郑州拽牛科技
开源软件微信小程序小程序系统架构大数据
【家政创业必看】家政行业小程序值得做吗?4大核心优势告诉你!随时随地下单:客户手机一键预约,告别找电话/翻页面的麻烦品牌专业升级:精美界面+服务详情+用户评价,打造可信赖形象营销神器:优惠券/会员积分/裂变奖励,拉新留客全搞定数据看板:精准分析需求偏好,优化服务更懂客户成本虽需投入,但对比引流增效的长期价值,绝对值得!
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- AI绘画商业实战教程(附带AI工具+教程资料)SD+MJ变现教程
我算是程序猿
AI作画人工智能stablediffusionAIGCmidjourney
家人们,当下AI发展迅猛,利用AI制作的科技科普视频在各大平台备受瞩目。许多新账号依靠这类视频,短期内就实现了粉丝的飞速增长。有个账号才发18条作品,粉丝就涨到35万,单条最高点赞40万!科技科普赛道受众广泛,尤其是科技爱好者和学生群体。通过AI讲解前沿科技知识,视频一经发布就容易走红。而且变现方式丰富,不管是接科技产品推广、平台奖励,还是开设线上科技课程,都能轻松盈利。有博主靠推广科技产品,收益
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 代币(Token)是什么?用途、意义与实例解析
小宝哥Code
区块链区块链
代币(Token)是什么?用途、意义与实例解析1.什么是代币(Token)?代币(Token)是区块链上的数字资产,具有一定的价值、功能或权益。它与区块链原生币(如ETH、BTC)不同,通常是在现有区块链(如以太坊、BSC、Solana)上发行的。1.1代币vs原生币对比项代币(Token)原生币(Coin,如ETH、BTC)依赖性依赖于现有区块链作为区块链的原生货币功能用于支付、治理、奖励等主要
- 【机器学习】Reinforcement Learning-强化学习基本概念
长相忆兮长相忆
深度学习人工智能算法机器学习
1、Q值与V值1.1Q值和V值的定义Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s,a),其中s是状态,a是动作。V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和的期望。V值与动作无关只与状态有关。Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点
- 多米优选APP源码系统开发
wcz9563_18282031984
大数据
多米优选是一种基于卷轴模式的电商平台系统,它通过滚动展示商品信息,让用户在浏览商品的同时参与各种任务获得奖励,从而提升用户的活跃度和购买意愿。以下是多米优选卷轴模式系统开发的深度解析。一、系统概述多米优选卷轴模式源码系统旨在为用户提供一种全新的购物体验。通过卷轴模式,用户可以方便地浏览大量商品信息,并通过参与各种任务获得奖励。这种模式不仅提高了用户的参与度,也增加了平台的活跃度和粘性。二、核心功能
- SQL-o1:一种用于Text-to-SQL的自奖励启发式动态搜索方法
数之何
人工智能ai语言模型sql
1引言文本到SQL(Text2SQL)任务旨在将自然语言查询转换为可执行的SQL查询。得益于大规模语言模型(LLMs)的应用,该领域取得了显著进展。然而,模型的可扩展性、生成空间的限制以及SQL生成过程中的连贯性问题仍然存在。为了解决这些问题,我们提出了SQL-o1,一种基于自奖励的启发式搜索方法,旨在增强LLMs在SQL查询生成中的推理能力。SQL-o1结合了蒙特卡洛树搜索(MCTS)进行过程级
- JAVA版本GDAL安装使用教程(详细步骤)
Roc-xb
javaGDAL
GDAL由加拿大航天代理局开发,采用MIT/X开源协议,由OpenSourceGeospatialFoundation维护。它通过抽象数据模型统一支持多种地理数据格式,包括栅格数据(如GeoTIFF、JPEG2000、HDF)和矢量数据(如Shapefile、GeoJSON)。其跨平台性支持Windows、Linux、macOS等操作系统,并提供了Python、C/C++、Java等多种语言接口一
- python数据分析之爬虫基础:爬虫介绍以及urllib详解
web13765607643
python数据分析爬虫
前言在数据分析中,爬虫有着很大作用,可以自动爬取网页中提取的大量的数据,比如从电商网站手机商品信息,为市场分析提供数据基础。也可以补充数据集、检测动态变化等一系列作用。可以说在数据分析中有着相当大的作用!页面结构介绍这里主要介绍HTML的一些简单结构,需要一点前端的知识,可以根据情况直接跳过。Title姓名年龄性别张三18男铁锅炖大鹅小鸡炖蘑菇锅包肉奖励自己睡觉起床读书学习爬虫相关概念1、爬虫的概
- 游戏任务系统模块架构设计分析
你一身傲骨怎能输
射击游戏项目游戏
1.引言在现代商业化射击游戏中,任务系统是一个至关重要的模块。它不仅能增加游戏的深度和趣味性,还能通过任务奖励机制提高玩家的参与度和留存率。本文将详细介绍一个高扩展、高性能、高可配置的C#语言任务系统模块的架构设计和实现。2.需求分析2.1功能需求任务创建与管理:支持创建、更新、删除任务。任务分配:支持将任务分配给玩家。任务进度跟踪:实时跟踪玩家的任务进度。任务完成与奖励:处理任务完成后的奖励发放
- 重磅活动!3.14,与数智领袖共探 NoETL 指标平台最佳实践
NoETL指标平台重塑了指标开发协作模式。AloudataCAN以强大的指标定义和查询加速能力,直连数仓公共层明细数据,自动化代持宽表与汇总表开发,实现了NoSQL指标定义、NoETL指标开发、统一指标管理,一举解决了指标“开发周期长、口径不统一、分析不灵活、冗余成本高”等顽疾,并在金融、消费零售、制造、ICT、能源、航空、医疗等多行业打造了标杆案例,为企业数据开发、消费与管理带来了颠覆性变革。作
- 【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
@橘柑橙柠桔柚
python算法人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1有/无策略奖励2.2训练结果12.2训练结果23参考文献4Python代码、数据、文章1概述文献来源:根据微电网或微能源网是否与主电网相连接,可将其分为并网型和独立型2种。本文以并网型微能源网为研究对象,研究其并网运行的能量管理与优化问题。目前,
- 深入详解人工智能机器学习:强化学习
猿享天开
人工智能基础知识学习人工智能机器学习强化学习
目录强化学习概述强化学习的基本概念定义关键组件强化学习过程常用算法应用示例示例代码代码解释应用场景强化学习核心概念和底层原理核心概念底层原理总结强化学习概述强化学习(ReinforcementLearning,RL)是机器学习中的一个重要领域,其核心目标是通过与环境的交互学习如何采取行动以最大化累积奖励。与监督学习不同的是,强化学习不依赖于给定的输入输出对,而是通过试探和反馈不断改进决策策略。强化
- 机器学习:强化学习的epsilon贪心算法
田乐蒙
PythonML机器学习贪心算法人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错探索(Exploration-Exploitation)以及基于奖励信号的学习。强化学习任务通常用马尔可夫决策过程来描述:机器处于环境EEE中,状态空间XXX,其中每个状态x∈Xx\inXx∈X是
- 大一蒟蒻伴你答pta天梯赛(L1-051--L1-060)
Haostar;
算法c++数据结构
"代码都是c++的"L1-051打折思路:蒟蒻题代码:#includeusingnamespacestd;voidsolve(){doublea,k;cin>>a>>k;printf("%.2f",a*k*0.1);return;}intmain(){intT;T=1;//cin>>T;while(T--){solve();}return0;}L1-0522018我们要赢思路:输出奖励题代码:#i
- Unity 列表滚动到指定位置
程序猿多布
unity
使用场景策划提出需求:当玩家打开领奖界面时,奖励列表需要自动滑动到可以领奖的奖励栏处或者正在进行的任务栏处。思路1、将Content设置好对齐方式和锚点子物体的预制体和Content:pivot轴心点设置为(0,1),并且设置为左上角对齐。2、主要根据索引计算Content需要设置的高度即(RectTransform的PosY)varsumHeight=targetIndex*(itemHeigh
- 让 LLM 来评判 | 设计你自己的评估 prompt
人工智能llmprompt
设计你自己的评估prompt这是让LLM来评判系列文章的第三篇,敬请关注系列文章:基础概念选择LLM评估模型设计你自己的评估prompt评估你的评估结果奖励模型相关内容技巧与提示通用prompt设计建议我总结的互联网上通用prompt的通用设计原则如下:任务描述清晰:YourtaskistodoX(你的任务是X).YouwillbeprovidedwithY(你拿到的信息是Y).评估标准精细,评分
- 论文笔记(七十二)Reward Centering(一)
墨绿色的摆渡人
文章论文阅读
RewardCentering(一)文章概括摘要1奖励中心化理论文章概括引用:@article{naik2024reward,title={RewardCentering},author={Naik,AbhishekandWan,YiandTomar,MananandSutton,RichardS},journal={arXivpreprintarXiv:2405.09999},year={202
- ThinkJSON:通过强化学习让大型语言模型(LLM)严格遵守JSON模式
AI仙人掌
人工智能深度学习
标题:ThinkInsidetheJSON:ReinforcementStrategyforStrictLLMSchemaAdherence作者:BhavikAgarwal,IshanJoshi,ViktoriaRojkova机构:MasterControlAIResearch链接:arXiv:2502.14905v1本文提出了一种轻量级强化学习框架,通过合成数据、多奖励函数和GRPO优化,显著提
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi