Redis基础数据结构-字典

正文

基础数据结构

  字典,又称为符号表(symbol table )、关联数组(associative anay )或映射(map ),是 一种用于保存键值对(key-value pair )的抽象数据结构。
  Redis所使用的C语言并 没有内置这种数据结构,因此Redis构建了自己的字典实现。
  Redis字典所使用的哈希表结构如下:

typedef struct dictht {
//哈希表数组
dictEntry **table;
//哈希表大小
unsigned long size;
//哈軍枣大小掩码.用于计算索引值
//总是拿于size-1
unsigned long sizemask;
//该哈希表已有节点的数量
unsigned long used;
} dictht;

table属性是一个数组,数组中的每个元素都是一个指向dict.h/dictEntry结构的指针,每个dictEntry结构保存着一个键值对。size属性记录了哈希表的大小,也即
是table数组的大小,而used属性则记录了哈希表目前已有节点(键值对)的数量。 sizemask属性的值总是等于size-1,这 个属性和哈希值一起决定一个键应该被放到 table数组的哪个索引上面。


image.png

dictEntry也就是哈希表节点,每个节点保存一个键值对,它的结构如下:

typedef struct dictEntry {
//键
void *key;
//值
union {
void *val;
uint64_tu64;
int64_ts64;
} v;
//指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;

key是键,v是值,v可以是一个指针,或者64位无符号整数,或者64位有符号整数。next是指向下一个节点的指针,这个指针可以将多个哈希值相同的键值对 连接在一次,以此来解决键冲突(collision)的问题。


image.png

上面是哈希表和节点的结构,而他们的“宿主”字典dict. h/dict的结构如下:

typedef struct dict {
//类型特定函数
dictType *type;
//私有数据
void *privdata;
//哈希表
dictht ht[2];
// rehash 索引
//当rehash不在进行时,值为
in trehashidx; /*rehashing not in progress"if rehashidx == -1 */
} dict;

type属性和privdata属性是针对不同类型的键值对,为创建多态字典而设置的:

  • type属性是一个指向dictType结构的指针,每个dictType结构保存了一簇用于操作特定类型键值对的函数,Redis会为用途不同的字典设置不同的类型特定函数。
  • 而private属性则保存了需要传给那些类型特定函数的可选参数
typedef struct dictType {
//计算哈希值的函数 
unsigned int (*hashFunction)(const void *key);
//复制键的函数
void * (*keyDup) (void *privdata, const void *key);
//复制值的函数
void * (*valDup) (void *privdata, const void *obj);
//对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
//销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
//销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
} dictType;

ht属性是一个包含两个项的数组,数组中的每个项都是一个dictht哈希表,一般情况 下,字典只使用ht[0]哈希表,ht[1]哈希表只会在对ht[0]哈希表进行rehash时使用。
除了 ht[1]之外,另一个和rehash有关的属性就是rehashidx,它记录了 rehash目前的进度,如果目前没有在进行rehash,那么它的值为-1

当要将一个新的键值对添加到字典里面时计算过程如下:

#使用字典设置的哈希函数,计算键key的哈希值
hash = dict->type ->hashFunction(key);
#使用哈希表的sizemask属性和哈希值,计算出索引值 
#根据情况不同,ht[x]可以是ht[0]或者ht[1]
index = hash & dict->ht[x].sizemask;

  Redis使用MurmurHash 算法来计算键的哈希值。算法的优点在于即使输入的键是有规律的,算法仍能给出一个很好的随机分布性,并且算法的计算速度也非常快。
  当有两个或以上数量的键被分配到了哈希表数组的同一个索引上面时,我们称这些键发生了冲突(collision )
  Redis的哈希表使用链地址法(separate chaining )来解决键冲突
  因为dictEntry节点组成的链表没有指向链表表尾的指针,所以为了速度考虑,程序总是将新节点添加到链表的表头位置复杂度为O(1)排在其他已有节点的前面

image.png

rehash

  随着操作的不断执行,哈希表保存的键值对会逐渐地增多或者减少,为了让哈希表的负载因子(load factor)维持在一个合理的范围之内,当哈希表保存的键值对数量太多或者太少时,程序需要对哈希表的大小进行相应的扩展或者收缩。
  扩展和收缩哈希表的工作可以通过执行rehash (重新散列)操作来完成,Redis对字典的哈希表执行rehash的步骤如下:
1)为字典的ht[1]哈希表分配空间,这个哈希表的空间大小取决于要执行的操作,以
及ht[0]当前包含的健值对数量(也即是ht[0].used属性的值)

  • 如果执行的是扩展操作,那么ht[1]的大小为第一个大于等于ht[0].used*2 的2的n次方
  • 如果执行的是收缩操作,那么ht[1]的大小为第一个大于等于ht[0].used的2的n次方。

2)将保存在ht[0]中的所有键值对rehash到ht[1]上面:rehash指的是重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。
3)当ht[0]包含的所有键值对都迁移到了 ht[1]之后(ht[0]变为空表),释放 ht[0],将ht[1]设置为ht[0],并在ht[1]新创建一个空白哈希表,为下一次rehash做准备
举个例子:
假设要对下图的字典的ht[0]进行扩展操作:


image.png

1) ht[0] . used当前的值为4, 4 *2 = 8,而8 ( 2的3次幂)恰好是第一个大于等于4的2的 n次方,所以程序会将ht [1]哈希表的大小设置为8。图4-9展示了 ht [1]在分配空间之 后,字典的样子。


image.png

2)将ht [0]包含的四个键值对都rehash到ht[1],如图4-10所示。
image.png

3)释放ht[0],并将ht[1]设置为ht[0],然后为分配一个空白哈希表,如图4-11所示。至此,对3)释放ht[0],并将ht[l]设置为ht[0],然后为分配一个空白哈希表,如 图4-11所示。至此,对哈希表的扩展操作执行完毕,程序成功将哈希表的大小从原来的4 改为了现在的8。
image.png

哈希表的扩展与收缩时机

当以下条件中的任意一个被满足时,程序会自动开始对哈希表执行扩展操作:
1)服务器目前没有在执行BGSAVE命令或者BGREWRITEAOF命令,并且哈希表的负载因子大于等于1。
2)服务器目前正在执行BGSAVE命令或者BGREWRITEAOF命令,并且哈希表的负载因子大于等于5。
  根据BGSAVE命令或BGREWRITEAOF命令是否正在执行,服务器执行扩展操作所 需的负载因子并不相同,这是因为在执行BGSAVE命令或BGREWRITEAOF命令的过程 中,Redis需要创建当前服务器进程的子进程,而大多数操作系统都采用写时复制(copy-on-write)技术来优化子进程的使用效率,所以在子进程存在期间,服务器会提高执行扩展操作所需的负载因子,从而尽可能地避免在子进程存在期间进行哈希表扩展操作,这可以避免不必要的内存写入操作,最大限度地节约内存。
当哈希表的负载因子小于0.1时,程序自动开始对哈希表执行收缩操作。

渐进式rehash

  扩展或收缩哈希表需要将ht[0]里面的所有键值对rehash到ht[1] 里面,但是,这个rehash动作并不是一次性、集中式地完成的,而是分多次、渐进式地完成的。
  这样做的原因在于,如果ht[0]里只保存着四个键值对,那么服务器可以在瞬间就将 这些键值对全部rehash到ht[1];但是,如果哈希表里保存的键值对数量不是四个,而是 四百万、四千万甚至四亿个键值对,那么要一次性将这些键值对全部rehash到ht[1]的话, 庞大的计算量可能会导致服务器在一段时间内停止服务。

rehash详细步骤

1)为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表。
2)在字典中维持一个索引计数器变量rehashidx,并将它的值设置为0,表示rehash 工作正式开始。
3)在rehash进行期间,每次对字典执行添加、删除、査找或者更新操作时,程序除了执行指定的操作以外,还会顺带将ht[0]哈希表在rehashidx索引上的所有键值对 rehash到ht[1],当rehash工作完成之后,程序将rehashidx属性的值增一。
4)随着字典操作的不断执行,最终在某个时间点上,ht[0]的所有键值对都会被 rehash至ht[1],这时程序将rehashidx属性的值设为-1,表示rehash操作已完成。

渐进式rehash的好处在于它采取分而治之的方式,将rehash键值对所需的计算工作均 摊到对字典的每个添加、删除、查找和更新操作上,从而避免了集中式rehash而带来的庞大计算量。

  因为在进行渐进式rehash的过程中,字典会同时使用ht[0]和ht[1]两个哈希表, 所以在渐进式rehash进行期间,字典的删除、查找、更新等操作会在两个哈希表上进行。例如,要在字典里面査找一个键的话,程序会先在ht[0]里面进行査找,如果没找到的话,就会继续到ht[1]里面进行査找。
  另外,在渐进式rehash执行期间,新添加到字典的键值对一律会被保存到ht[1]里面, 而ht[0]则不再进行任何添加操作,这一措施保证了 ht[0]包含的键值对数量会只减不增,并随着rehash操作的执行而最终变成空表。

总结

这一章的重点有:哈希表的结构、哈希表键值对节点的结构、字典的结构、dictType结构。rehash过程,哈希表的扩展与收缩时机,渐进式rehash
字典包含了哈希表和dictType和ht数组,哈希表包含了哈希表节点。ht数组用来做rehash操作。

你可能感兴趣的:(Redis基础数据结构-字典)