- 蓝桥杯学习大纲
ん贤
蓝桥杯算法数据结构
(致酷德与热爱算法、编程的小伙伴们)在查阅了相当多的资料后,发现没有那篇博客、文章很符合我们备战蓝桥杯的学习路径。所以,干脆自己整理一篇,欢迎大家补充!一、蓝桥必备高频考点我们以此为重点学习方向:1.基础算法枚举模拟贪心递归分治构造前缀和差分2.搜索与排序线性搜索二分法BFSDFS回溯剪枝深搜优化记忆化搜索位运算冒泡排序归并排序快速排序桶排序3.动态规划编辑距离最长不重复子串整数背包矩阵连乘最长公
- 【Python 语法】heapq 模块
一杯水果茶!
python
堆的应用场景主要功能示例:使用`heapq`实现优先队列heapq是Python标准库中用于实现堆队列(heapqueue)算法的模块。堆队列是一个基于堆(heap)数据结构的优先队列,它能在O(logn)时间内执行插入、删除最小元素等操作。Python中的heapq模块实现的是一个最小堆(min-heap),即堆顶元素是堆中的最小元素。堆的应用场景优先队列:heapq可以用来实现优先队列,按优先
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- 【MATLAB例程】虚拟长基线校正INS,代码实现
MATLAB卡尔曼
matlab开发语言
实现水下航行器(AUV)的惯性导航(SINS)与虚拟长基线(VLBL)融合校正,抑制导航误差累积。文章目录惯性导航核心算法误差模型改进运行结果:代码代码总结核心功能技术亮点应用场景结果验证扩展建议代码依赖与运行创新点总结惯性导航核心算法采用四元数法进行姿态更新(如搜索结果3所述),解决大角度旋转问题实现速度/位置力学编排(参考搜索结果14的机械编排流程)虚拟长基线校正:模拟4个海底信标的测距数据(
- 三大平台云数据库生态服务对决
title:三大平台云数据库生态服务对决date:2025/2/21updated:2025/2/21author:cmdragonexcerpt:包含自动分片算法实现、跨云迁移工具链开发、智能索引推荐系统构建等核心内容,提供成本优化计算模型、灾备演练方案设计、性能调优路线图等完整解决方案。categories:前端开发tags:云数据库弹性扩展多云架构数据库即服务自动运维全球部署成本优化扫描二维
- 前端面试题---虚拟dom更新原理
*星之卡比*
前端前端vue.js
vue的生命周期里有"挂载"这个阶段这个阶段里,vue实例已经把准备好的组件挂载到页面,模版被编译成虚拟DOM,最终渲染到实际的dom中Vue虚拟DOM更新原理1数据变化:当组件数据变化时,Vue会重新生成虚拟DOM。2Diff算法:Vue比较新旧虚拟DOM,找到差异。3生成补丁:根据差异生成补丁(需要更新的DOM操作)。4应用补丁:将补丁应用到真实DOM,更新视图。5异步更新:Vue将更新操作异
- C语言知识点复习4
邮专小谦
c语言
三、隐式类型转换隐式类型转换的原因:参与计算的数据如果类型不同无法直接进行计算。整型提升:有符号的补符号位,无符号的补0(符号位为最外面的那位)unsignedchar8位数据位,范围在0-255,所以-2(11111110)时,变成254;同理-1(11111111)时,变成255;最后减到0时,不满足循环条件,for停止。刚好173次。(741==>共(7-1)/3+1=3次,1-3=-2,即
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 深度学习归一化与正则化
鱼儿也有烦恼
深度学习深度学习
文章目录深度学习归一化与正则化1.归一化(Normalization)2.正则化(Regularization)深度学习归一化与正则化1.归一化(Normalization)定义:归一化是指通过某种算法将输入数据或神经网络层的激活值处理后限制在我们需要的特定范围内。它的目的是为了方便后续的数据处理,并加快程序的收敛速度。归一化的主要作用是统一样本的统计分布。在0到1之间的归一化代表的是概率分布,而
- Cavishape: Python编程与图像处理的艺术之作
laforet
本文还有配套的精品资源,点击获取简介:Cavishape可能是一个以Python编写的创新软件项目,它的名称和标签暗示着该项目具有非传统的设计和创新的特性。项目的主要元素可能与图形用户界面设计和图像处理相关,特别是以鱼形为设计元素。它可能采用了面向对象编程方法,图形界面可能利用了Python的GUI库,图像处理方面可能涉及特定的图形生成算法。项目可能使用了版本控制,如Git,并强调测试与调试的重要
- 【机器学习】向量化使得简单线性回归性能提升
若兰幽竹
机器学习机器学习线性回归人工智能
向量化使得简单线性回归性能提升一、摘要二、向量化运算概述三、向量化运算在简单线性回归中的应用四、性能测试与结果分析一、摘要本文主要讲述了向量化运算在简单线性回归算法中的应用。通过回顾传统for循环方式实现的简单线性回归算法,介绍了如何通过最小二乘法计算a的值。然而,这种方式在计算性能上存在效率较低的问题。为了提高性能,视频引入了向量化运算的概念,即将计算过程从循环方式转变为向量之间的计算。通过向量
- openssl中dh算法实现
sjtu_chenchen
加密技术c++openssldh
Openssl的DH实现在crypt/dh目录中,各个源码如下:(1)dh.h定义了DH密钥方法数据结构以及各种函数。(2)dh_asn1.cDH密钥参数的DER编解码实现。(3)dh_lib.c实现了通用的DH函数,设计层面的。(4)dh_gen.c实现了生成DH密钥参数。(5)dh_key.c实现openssl提供的默认的DH_METHOD,实现了根据密钥参数生成DH公私钥,以及根据DH公钥(
- 推荐:Rust语言的OpenSSL绑定库 - rust-openssl
黎杉娜Torrent
推荐:Rust语言的OpenSSL绑定库-rust-openssl去发现同类优质开源项目:https://gitcode.com/在这个安全日益重要的时代,加密库的作用不言而喻。rust-openssl是一个专门为Rust编程语言设计的OpenSSL绑定库,它为开发者提供了与OpenSSL无缝交互的接口。无论你是Web开发人员,网络安全专家,还是对加密算法有热情的程序员,rust-openssl都
- Openssl与网络安全
Sallyyym
知识openssl网络安全
openssl一openssl简史二openssl组成三openssl优缺点四openssl功能一openssl简史openssl是一个开放源代码的SSL协议的产品实现,采用C语言作为开发语言,具备了跨系统的性能。Openssl最早版本在1995年发布的,1998年后开始由openssl项目组维护和开发。openssl的源代码库可以从官网链接:https://www.openssl.org/.支持
- 【C语言】typedef 关键字详解
LuckiBit
C语言c语言typedef关键字语法类型
目录C语言`typedef`关键字详解1.`typedef`关键字的基本概念1.1基本语法1.2示例2.使用`typedef`关键字的实际应用2.1简化复杂的数据类型2.1.1结构体类型别名2.1.2指针类型别名2.2定义函数指针类型2.2.1示例2.3简化联合体(Union)和枚举(Enum)的使用2.3.1联合体示例2.3.2枚举示例3.`typedef`的注意事项4.综合示例5.总结6.结束
- 【C语言】inline 关键字详解
LuckiBit
C语言c语言inline关键字语法类型
目录C语言`inline`关键字详解1.概述1.1主要目的1.2历史背景2.用法2.1基本示例2.2内联函数的声明和定义3.编译器行为3.1编译器的决定3.2内联的局限性4.适用场景4.1数学运算函数4.2访问器函数5.注意事项5.1代码膨胀5.2递归函数5.3复杂函数6.示例6.1代码输出7.GCC特性7.1GCC编译器选项8.总结8.1使用建议9.结束语相关文章:C语言inline关键字详解1
- k8s ssl 漏洞修复
魏 无羡
kubernetesssl容器
针对Kubernetes集群中SSL/TLS协议信息泄露漏洞(CVE-2016-2183)的修复,需重点修改涉及弱加密算法的组件配置。以下是具体修复步骤及验证方法:一、漏洞修复步骤1.修复etcd服务修改配置文件:编辑/etc/kubernetes/manifests/etcd.yaml,在command段添加以下参数禁用弱加密算法:---cipher-suites=TLS_ECDHE_RSA_W
- [原创](Modern C++)现代C++的关键性概念: 结构化绑定
我不是代码教父
#C/C++探究c++pairtuple
[作者]常用网名:猪头三出生日期:1981.XX.XX企鹅交流:643439947个人网站:80x86汇编小站编程生涯:2001年~至今[共24年]职业生涯:22年开发语言:C/C++、80x86ASM、PHP、Perl、Objective-C、ObjectPascal、C#、Python开发工具:VisualStudio、Delphi、XCode、Eclipse、C++Builder技能种类:逆
- 【数据结构与算法】栈与队列:从基础到实战,代码案例+应用场景全解析!
Leaton Lee
java开发语言算法数据结构
开篇互动:你的代码中是否还在手动管理数据顺序?“是否还在为数据先进先出、后进先出的顺序而烦恼?”栈(Stack)和队列(Queue)是计算机科学中最基础且最重要的数据结构之一。无论是浏览器的前进后退、打印机的任务处理,还是括号匹配、迷宫求解,栈和队列的身影无处不在。这篇文章将从栈和队列的基础概念出发,结合代码案例、经典问题和实际应用场景,手把手教你掌握这两个数据结构的核心知识!文末还有常见问题解答
- 精密单点定位/PPP软件GAMP学习之一
枯荣有常
卫星导航介绍和实现代码
一、基础知识1、《多系统GNSS非差非组合精密单点定位相关理论和方法研究》周锋博士论文2、《BDS/GPS非差非组合抗差自适应PPP》纪超3、《GPS非差相位精密单点定位理论与实现》叶世榕4、《BDS/GPS精密单点定位收敛时间与定位精度比较》张小红5、《精密单点定位收敛时间的确定方法研究》周承松6、《基于GPS双频原始观测值的精密单点定位算法及应用》张宝成7、《Precisepointposit
- OSPF基础知识总结
Rebesa
智能路由器网络网络协议网络安全
基本概念协议类型:链路状态型IGP(内部网关协议),基于Dijkstra算法计算最短路径树。协议号:IP层协议,协议号89。特点:支持分层设计(区域划分)、快速收敛、无环路、支持VLSM/CIDR。区域(Area)骨干区域(BackboneArea):Area0,所有非骨干区域必须直接或通过虚链路连接到Area0。区域边界路由器(ABR):连接不同区域的路由器,汇总区域间路由。自治系统边界路由器(
- Java jvm 标记-清除算法(Mark-Sweep)
阿豆学编程
JavaJVMjvm算法java
标记-清除算法(Mark-Sweep)是一种经典的垃圾回收算法,它通过两阶段的过程来回收不再使用的对象,具体步骤为:标记阶段(MarkPhase):遍历所有对象,标记出所有存活的对象。清除阶段(SweepPhase):回收那些未被标记的对象,即那些不再被任何引用引用的对象。1.标记-清除算法的工作原理标记-清除算法分为两个阶段,分别是标记阶段和清除阶段。1.1标记阶段在标记阶段,垃圾回收器会从根对
- OpenCV机器学习(10)训练数据的一个核心类cv::ml::TrainData
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::TrainData类是OpenCV机器学习模块中用于表示训练数据的一个核心类。它封装了样本数据、响应(标签)、样本权重等信息,并提供了多种方法来创建和操作这些数据,以适应不同的机器学习算法需求。主要功能数据准备:允许你从原始数据创建训练数据对象。支
- 量子计算行业深度研究报告:从理论突破到产业变革
萧十一郎@
深度研究量子计算
目录一、量子计算行业全景洞察1.1量子计算基本原理1.2量子计算发展历程1.3量子计算发展现状二、量子计算关键技术剖析2.1量子比特技术2.1.1超导量子比特2.1.2离子阱量子比特2.1.3光量子比特2.1.4其他量子比特技术2.2量子纠错技术2.3量子算法研究2.3.1Shor算法2.3.2Grover算法2.3.3其他量子算法三、量子计算产业生态构建3.1量子计算产业链结构3.2产业链上游:
- 【算法题】518. 零钱兑换 II-力扣(LeetCode)
杰九
算法leetcodepython
【算法题】518.零钱兑换II-力扣(LeetCode)1.题目下方是力扣官方题目的地址518.零钱兑换II给你一个整数数组coins表示不同面额的硬币,另给一个整数amount表示总金额。请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回0。假设每一种面额的硬币有无限个。题目数据保证结果符合32位带符号整数。示例1:输入:amount=5,coins=[1,2,5]
- 基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)
图像算法打怪
图像分割算法python开发语言
基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)文章目录基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)1.最大熵阈值分割原理2.基于非洲秃鹫算法优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于最大熵的图像分割,并且应用非洲秃鹫算法进行阈值寻优。1.最大熵阈值分割原理Kapur等人于1985年提出的最大熵法是另一种广受关注的阈值选取方法,其是在
- 使用 Python、IBPy 和 Interactive Brokers API 实现交易自动化
云梦量化
python自动化开发语言机器学习信息可视化金融算法
使用Python、IBPy和InteractiveBrokersAPI实现交易自动化不久前,我们讨论了如何设置InteractiveBrokers模拟账户。InteractiveBrokers是零售算法交易者使用的主要经纪商之一,因为它的最低账户余额要求相对较低(10,000美元)且API(相对)简单。在本文中,我们将使用模拟账户通过Python和IBPy插件自动执行InteractiveBrok
- 匹配算法:向下就近原则,向下没有就向上
一点也不想取名
算法java
匹配算法:向下就近原则,向下没有就向上实现方式一实现方式二总结实现方式一privatestaticListfindMatches(ListsourceList,ListsearchValues){ListsortedList=sourceList.stream().filter(Objects::nonNull).sorted().collect(Collectors.toList());Setf
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key