多层感知机实战

多层感知机的从零开始实现

我们将继续使用Fashion-MNIST图像分类数据集

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

1 初始化模型参数

Fashion-MNIST中的每个图像由 28×28=784个灰度像素值组成。 所有图像共分为10个类别。 忽略像素之间的空间结构, 我们可以将每个图像视为具有784个输入特征 和10个类的简单分类数据集。

实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元。通常,我们选择2的若干次幂作为层的宽度。 因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

2 激活函数

为了确保我们对模型的细节了如指掌, 我们将实现ReLU激活函数, 而不是直接调用内置的relu函数。

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

3 定义模型

因为我们忽略了空间结构, 所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。 只需几行代码就可以实现我们的模型。

def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法
    return (H@W2 + b2)

4 损失函数

直接使用高级API中的内置函数来计算softmax和交叉熵损失。

loss = nn.CrossEntropyLoss(reduction='none')

5 训练

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

6 预测

predict_ch3(net, test_iter)

简洁实现(torch)

import torch
from torch import nn
from d2l import torch as d2l

模型

添加了2个全连接层(之前我们只添加了1个全连接层)。 第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。 第二层是输出层。

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

损失函数

loss = nn.CrossEntropyLoss(reduction='none')

训练

batch_size, lr, num_epochs = 256, 0.1, 10
-- sgd 优化
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

预测

predict_ch3(net, test_iter)

总结

  • 对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层

你可能感兴趣的:(动手学深度学习,深度学习,人工智能,python,pytorch,分类)