- 普通话的调域中值
音元系统
语音识别自然语言处理语言模型python
普通话调域中值测算为五度标调法的3.81及其取整为4的准确性与合理性研究摘要本研究通过对比分析不同计算方法得出的普通话调域中值,探讨了将调域中值测算为3.81并取整为4的准确性与合理性。研究比较了本中值算法与刘俐李(2004)算法的差异,结合石锋(1986)等实证研究数据,验证了3.81作为调域中值的科学性。结果表明,该取值不仅符合普通话声调的实际分布特征,也为五度标调法的应用提供了更精确的参考标
- TensorFlow运行时核心:DirectSession::Run全解析
Jay Kay
tfservingc++tensorflow分布式
TensorFlow运行时核心:DirectSession::Run全解析TensorFlow的本地执行模式通过DirectSession::Run实现高效计算图处理,其核心流程分为三个阶段:图剪枝生成ClientGraph、设备间图分裂、跨设备并发执行。下面结合源码层设计深入剖析各环节实现原理。一、图剪枝:从FullGraph到ClientGraph目标:根据Session::Run指定的输入(
- Node.js 后端开发:与前端的完美结合
Node.js后端开发:与前端的完美结合关键词:Node.js、后端开发、前后端分离、RESTfulAPI、Express、性能优化、全栈开发摘要:本文深入探讨Node.js在后端开发中的优势及其与前端的完美结合方式。我们将从Node.js的核心特性出发,分析其适合后端开发的原因,详细介绍如何构建高性能的RESTfulAPI服务,探讨前后端分离架构的最佳实践,并通过实际项目案例展示Node.js如
- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- 切换自定义键盘导致系统键盘收起,小窗模式组件不应该失焦,如何解决?
bug菌¹
全栈Bug调优(实战版)harmonyos切换自定义键盘小窗模式组件
本文收录于《全栈Bug调优(实战版)》专栏,致力于分享我在项目实战过程中遇到的各类Bug及其原因,并提供切实有效的解决方案。无论你是初学者还是经验丰富的开发者,本文将为你指引出一条更高效的Bug修复之路,助你早日登顶,迈向财富自由的梦想!同时,欢迎大家关注、收藏、订阅本专栏,更多精彩内容正在持续更新中。让我们一起进步,Up!Up!Up! 备注:部分问题/难题源自互联网,经过精心筛选和整理,结合数
- 鸿蒙HarmonyOS实战开发:实现表情聊天场景案例
你我皆是牛马星人
HarmonyOS鸿蒙开发OpenHarmonyharmonyos华为android鸿蒙ui前端
鸿蒙NEXT开发实战往期必看文章:一分钟了解”纯血版!鸿蒙HarmonyOSNext应用开发!“非常详细的”鸿蒙HarmonyOSNext应用开发学习路线!(从零基础入门到精通)HarmonyOSNEXT应用开发案例实践总结合(持续更新......)HarmonyOSNEXT应用开发性能优化实践总结(持续更新......)介绍本示例主要介绍如何在聊天信息中加入表情图片。通过变量控制表情键盘的显示与
- 【2025最新】AI大模型项目实战教程大揭秘!超详细攻略,手把手带你飞,记得收藏!
大模型教程
人工智能产品经理大模型大模型教程大数据大模型学习程序员
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- 高性价比二手服务器CPU你知多少?
专注VB编程开发20年
CPU二手
以前E33220这些都不太好的吧,现在不知有哪种二手服务器CPU核心多,主频高,性价比更高,闲鱼二手上哪些值的买,多少钱根据2025年二手服务器CPU市场现状,结合核心数、主频、价格及兼容性,以下推荐四款高性价比型号(价格参考2025年5-6月闲鱼行情):⚡一、性能怪兽:IntelXeonE5-2696v3(18核36线程)核心参数:18核36线程|基础2.3GHz/睿频3.8GHz|L3
- 高考志愿不会填? AI 帮你填写高考志愿,手把手教你完成志愿填报
AI、少年郎
高考人工智能数据挖掘
一、背景高考成绩一出,志愿填报就成了家长和考生的“头号难题”。选对专业和院校,相当于为未来铺好一条“黄金赛道”!但面对海量院校和专业信息,怎么才能快速锁定适合自己的选项?别慌!今天就教你用AI轻松搞定志愿填报,不过先划重点:AI建议仅供参考,最终决策一定要结合实际、多方求证!本次以AI豆包为例,其他AI工具类似。可能很多人都说AI填报志愿谁不会啊,就是把问题抛给AI,让其帮着分析就行,但是对很多不
- Linux运维需要学多久?学习方式有哪些?
老男孩IT教育
linux运维
Linux运维工程师是一个融合多学科的综合性技术岗位,除了掌握相关技术之外,还需要具备沟通、销售、管理等非技术能力,因此也给运维工程师提供了非常广阔的发展空间。那么Linux运维工程师要学多久?以下是详细的内容介绍。Linux运维工程师要学多久?Linux运维工程师学习周期需结合学习方式来决定,不同的学习方式,周期是不同的。现在学习Linux运维技术分为两种情况。一种是自学,如果选择自学的话,学习
- 深入理解AI技术与实践:如何贡献代码
Wurenyu957
人工智能
在现代AI技术的开发过程中,贡献代码是推动项目发展、提升技术能力的重要方式。在这篇文章中,我们将结合AI技术实践,深入探讨如何有效地为开源项目贡献代码,尤其是那些使用AI模型的项目。技术背景介绍AI技术的迅猛发展得益于开源社区的共享和协作。诸如TensorFlow、PyTorch等开源框架,极大地降低了AI模型开发的门槛。与此同时,越来越多的项目通过GitHub等平台开放源码,接受来自全球开发者的
- Oracle 递归 + Decode + 分组函数实现复杂树形统计进阶(第二课)
AI、少年郎
数据库ORACLE分组求和自动递归树形数据统计
在上篇文章基础上,我们进一步解决层级数据递归汇总问题——让上级部门的统计结果自动包含所有下级部门数据(含多级子部门),并新增请假天数大于3天的统计维度。通过递归CTE、DECODE函数与分组函数的深度结合,实现真正意义上的树形结构数据聚合。一、业务需求升级:层级汇总与新增统计维度核心目标递归汇总:上级部门数据包含所有直属/非直属下级部门数据(如集团总部需汇总技术研发部、产品运营部及其子部门数据)新
- 2025年最值得关注的资产管理系统盘点(附选型新趋势)
Moriyu_elk_
企业信息化管理固定资产管理软件企业数字化转型资产管理IT管理管理工具推荐
企业资产管理已进入智能化、云端化和精细化时代。面对资产数量不断增长、盘点难、流转慢等挑战,各类资产管理系统推陈出新。下面为您盘点2025年表现突出的几款资产管理系统,结合各自最新亮点和适配场景,助您选型不踩坑。1.用友资产管理系统产品特点用友作为国内ERP和企业数字化管理领域的龙头企业,其固定资产管理模块定位于企业集团和大型组织。系统基于用友U8、NC等平台,能够实现固定资产采购、入库、调拨、转移
- 大模型之提示词工程十指令——结合认知科学与高效学习法的AI协作指南
SEVEN-YEARS
学习人工智能
1.费曼学习法:用“教学”倒逼模型理解复杂概念原理:通过模拟教学场景,迫使模型深入理解知识本质。指令示例:“请用‘小学数学老师’的身份,向孩子解释区块链的基本原理。”输出:“区块链就像一个透明的记账本,每个人都可以看到上面的记录。比如你和同学一起买零食,大家轮流在本子上记录谁买了什么,这样没有人能偷偷修改记录。”应用场景:技术概念简化、跨领域知识迁移、科普内容生成。2.帕累托法则:聚焦关键20%的
- 邮科千兆2光8电工业级交换机在高温环境中的可靠性实践
邮科工业交换机定制
网络安全
工业物联网场景里,网络设备稳定性关乎生产系统连续性,冶金、能源、交通等高温作业环境,工业交换机需经受75℃以上高温考验。本文以邮科千兆2光8电工业交换机为例,结合测试数据与应用案例,解析其高温环境下技术适配性与可靠性保障机制。一、高温对工业交换机的技术挑战工业现场高温对交换机影响多维。钢铁企业冷轧车间实测,环境温度超60℃,普通商用交换机散热不足,芯片温度飙升至95℃,数据包丢失率从0.03%增至
- 利用H5为小程序领域增添新活力
小程序开发2020
小程序开发宝典小程序ai
利用H5为小程序领域增添新活力关键词:H5技术、小程序开发、跨平台架构、WebView通信、动态内容渲染、性能优化、全栈开发摘要:本文深入探讨如何通过HTML5(H5)技术提升小程序开发效率与用户体验。从技术架构对比到核心通信机制,结合具体代码案例解析H5与小程序的深度融合方案。通过WebView嵌入、JSSDK扩展、动态模板渲染等技术手段,实现跨平台代码复用、复杂交互组件开发和实时内容更新。同时
- 自然语言处理(NLP)中的文本生成控制技术
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据自然语言处理easyui人工智能ai
自然语言处理(NLP)中的文本生成控制技术关键词:文本生成、可控生成、语言模型、Prompt工程、解码策略、条件控制、评估指标摘要:本文深入探讨自然语言处理中文本生成控制技术的最新进展。我们将从基础概念出发,系统分析各种控制方法的原理和实现,包括Prompt设计、解码策略优化、条件控制机制等核心内容。文章将结合数学模型、算法实现和实际案例,全面展示如何实现高质量、可控的文本生成,并探讨该领域面临的
- Ultralytics YOLO 库介绍与使用指南
东北豆子哥
人工智能/机器学习YOLO
文章目录UltralyticsYOLO库介绍与使用指南主要特点安装基本使用1.使用预训练模型进行推理2.训练自定义模型3.验证模型4.导出模型高级功能1.使用不同任务模型2.使用自定义数据集3.跟踪对象(结合ByteTrack)常见问题解决性能优化技巧UltralyticsYOLO库介绍与使用指南UltralyticsYOLO是一个流行的计算机视觉库,专注于实现和优化YOLO(YouOnlyLoo
- Perl, Go 开发征信修复技巧及实操方案APP
Geeker-2025
perlgolang
以下是一个基于Perl和Go开发的征信修复技巧及实操方案APP的系统化设计方案,结合两种语言的优势及金融科技领域的合规要求:---###一、征信修复业务流程与功能设计|**流程阶段**|**核心功能**|**技术实现**||--------------------|-----------------------------|-------------------------------------
- PCDN与边缘计算:流量处理的双赢方案
数据库
PCDN与边缘计算:流量处理的双赢方案在数字化时代,宽带流量的快速增长对传统网络架构提出了更高要求。视频、直播、云计算等应用消耗了大量带宽资源,如何高效、低成本地处理流量成为行业关注的重点。PCDN(Peer-to-PeerContentDeliveryNetwork)与边缘计算的结合,为流量优化提供了双赢解决方案。PCDN通过利用用户闲置带宽和存储资源,构建分布式网络,使内容分发更接近终端用户。
- 实战|StarRocks 通过 JDBC Catalog 访问 MongoDB 的数据
方案介绍本文档介绍如何通过StarRocks的JDBCCatalog功能,结合MongoDBBIConnector,将MongoDB数据便捷接入StarRocks,实现数据打通和SQL查询分析,以下是整体流程图。前提条件StarRocks环境:版本≥3.0,支持JDBCCatalog功能。MongoDBBIConnector:已安装并运行,版本需与MongoDB兼容(参考MongoDB官方文档)。
- JVM调优实战 Day 5:内存泄漏与溢出分析
在未来等你
JVM调优实战JVMJava性能优化调优虚拟机
【JVM调优实战Day5】内存泄漏与溢出分析文章简述在Java应用中,内存泄漏和内存溢出是常见的性能瓶颈问题。本文作为“JVM调优实战”系列的第五天内容,深入讲解了JVM中内存泄漏与溢出的基本概念、原理机制、常见问题及诊断方法。文章通过理论结合实践的方式,介绍了如何使用JVM工具如jstat、jmap、jhat等进行堆内存分析,并提供了完整的代码示例和配置参数。同时,文中还包含一个真实生产环境中的
- 互联网大厂Java面试指南:从基础到高阶技术栈与业务场景实战
yiiyx
Java场景面试宝典JavaSpringBoot微服务面试分布式系统
互联网大厂Java面试指南:从基础到高阶技术栈与业务场景实战场景介绍本文模拟互联网大厂高级Java工程师面试场景,涵盖JavaSE、Spring生态、微服务、数据库、缓存、消息队列等技术栈,结合音视频、电商、金融等业务场景,提供3轮渐进式提问与详细解析。技术栈核心语言与平台:JavaSE(8/11/17),JakartaEE(JavaEE),JVM构建工具:Maven,Gradle,AntWeb框
- 企业级RAG系统架构设计与实现指南(Java技术栈)
在未来等你
大模型应用开发AI技术编程JavaSpring
企业级RAG系统架构设计与实现指南(Java技术栈)开篇:RAG系统的基本概念与企业应用价值在当今快速发展的AI技术背景下,检索增强生成(Retrieval-AugmentedGeneration,RAG)已成为构建智能问答、知识库管理、个性化推荐等应用的核心技术之一。RAG系统通过结合信息检索与自然语言生成(NLG),能够有效提升模型对特定领域数据的适应能力,避免传统大模型在训练数据不足或数据更
- uni-app的生命周期
weixin_42339193
uni-app
目录一、整体的架构概述二、核心生命周期1、应用生命周期(App.vue)2、页面生命周期(页面的组件)3、组件生命周期(与vue一致)三、高频面试问题解答1.应用生命周期vs页面生命周期2.onReady和mounted的区别3.如何优化生命周期中的性能?四、结合项目的最佳实践在uni-app中的也存在着生命周期,vue和react的生命周期一样。理解uni-app的生命周期,可以帮助我们更好的书
- ES6 新特性从入门到精通:100 + 代码示例带你轻松掌握(附图解教程)
北泽别胡说
新手保护期从0到1学前端javascript前端开发语言es6
本文针对JavaScript新手系统讲解ES6核心语法,涵盖变量声明、箭头函数、解构赋值、类与继承、Promise等核心模块。通过150+行带注释代码,结合「传统写法对比」和「新手避坑指南」,帮助读者3小时掌握ES6关键特性,快速应用于项目开发。一、ES6入门:为什么必须学习ES6?1.1ES6的革命性升级代码简洁性:箭头函数、模板字符串等语法减少冗余代码逻辑清晰性:class类、模块化语法让代码
- 构建私有视觉搜索应用:多模态大模型的应用实例
2301_80727036
自然语言处理
在当今的科技时代,视觉搜索功能已经不再是新鲜事物,许多智能手机用户都可以通过自然语言搜索照片。随着开源多模态大型语言模型(Multi-modalLLMs)的兴起,我们现在可以为自己构建这种视觉搜索应用,用于管理自己的私人照片收藏。本教程将向您展示如何通过代码示例,使用开源多模态LLM构建私有视觉搜索和问答系统。技术背景介绍多模态大模型结合了文本和图像处理能力,使得我们可以开发更智能的应用程序。通过
- AI人工智能助力空间智能领域提升运营效率
AI智能探索者
AIAgent智能体开发实战人工智能网络ai
AI人工智能助力空间智能领域提升运营效率关键词:AI人工智能、空间智能领域、运营效率、智能算法、数据驱动摘要:本文聚焦于AI人工智能在空间智能领域的应用,旨在探讨其如何助力该领域提升运营效率。首先介绍了空间智能领域的背景和相关概念,阐述了AI在其中的核心作用和原理。接着详细讲解了相关核心算法,并结合数学模型进行分析。通过项目实战案例展示了AI在空间智能领域的具体应用和实现方式。同时探讨了实际应用场
- [插电式混合动力车辆][交替方向乘子法(ADMM)结合CVX]插电式混合动力车辆的能源管理:基于凸优化算法用于模型预测控制MPC研究(Matlab代码实现)
程序辅导帮
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite