第15届蓝桥杯嵌入式省赛准备第三天总结笔记(使用STM32cubeMX创建hal库工程+串口接收发送)

因为我是自己搞得板子,原本的下程序和串口1有问题,所以我用的是串口2,用的PA2和PA3

一,使用CubeMX配置串口

选择A开头的这个是异步通信。

第15届蓝桥杯嵌入式省赛准备第三天总结笔记(使用STM32cubeMX创建hal库工程+串口接收发送)_第1张图片

配置串口参数,往届的题基本用的9600波特率,所以我这里设置为9600,其他参数照着设置即可。

第15届蓝桥杯嵌入式省赛准备第三天总结笔记(使用STM32cubeMX创建hal库工程+串口接收发送)_第2张图片

接下来设置开启串口中断,把他勾选上。

第15届蓝桥杯嵌入式省赛准备第三天总结笔记(使用STM32cubeMX创建hal库工程+串口接收发送)_第3张图片

下一步,配置基本GPIO,B站很多博主都更改过配置,我默认的使用没什么问题

第15届蓝桥杯嵌入式省赛准备第三天总结笔记(使用STM32cubeMX创建hal库工程+串口接收发送)_第4张图片

接下来把程序导出即可。

二,发送数据

我们在主程序写一个发送程序,首先需要添加两个头文件

#include "stdio.h"
#include "string.h"

然后写发送程序:

	char temp1[30];
	sprintf(temp1,"%d\r\n",123456);
	HAL_UART_Transmit(&huart2,(uint8_t *)temp1,strlen(temp1),50);

sprintf函数:包含在stdio.h里面,他在作用是将sprintf函数打印到字符串中(要注意字符串的长度要足够容纳打印的内容,否则会出现内存溢出),这里我们就是将123456放到temp1这个数组里面。

HAL_UART_Transmit是HAL库提供的串口发送函数。四个参数分别是:

* @param huart UART句柄。
* @param pData指向数据缓冲区(u8或u16数据元素)。
* @param Size要发送的数据元素数量(u8或u16)。
* @param Timeout超时时间。

串口接收:

第15届蓝桥杯嵌入式省赛准备第三天总结笔记(使用STM32cubeMX创建hal库工程+串口接收发送)_第5张图片

三,接收数据

需要自己写两个函数

uint8_t rx_porint=0;
uint8_t rx_dat; 
char rx_data[64];
char car_1[10];
char car_2[10];
char car_3[20];
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) //Rx传输完成回调,这个就是HAL库中其中一个回调函数,接受完成回调。
{
	
	 rx_data[rx_porint++]=rx_dat;
	 HAL_UART_Receive_IT(&huart2,&rx_dat,1);
}


void Uart_Rx_Receiving_Processvoid(void) //接受数据处理函数
{
	if(rx_porint>0)
	{
	    sscanf(rx_data,"%4s:%4s:%14s",car_1,car_2,car_3);
	}	
	rx_porint = 0;memset(rx_data,0,30);
}

sscanf:通常被用来解析并转换字符串,可以实现很强大的字符串解析功能。

memset:作用数组清零。

接下来是我的main.c和usart.c和usart.h程序全部。

//main.c
#include "main.h"
#include "gpio.h"
#include "lcd.h"
#include "usart.h"
#include "stdio.h"
#include "string.h"
void SystemClock_Config(void);
unsigned char key; 
char temp1[30];
int main(void)
{
  HAL_Init();
  SystemClock_Config();
	
  MX_GPIO_Init();
	LCD_Init();
	LED_Init();
	Key_Init();
	MX_USART2_UART_Init();
	sprintf(temp1,"%d\r\n",123456);
	HAL_UART_Transmit(&huart2,(uint8_t *)temp1,strlen(temp1),50);
  while (1)
  {
   if(rx_porint != 0)
	 {
		 int temp=rx_porint;
		 HAL_Delay(1);
		 if(temp==rx_porint)
		 {
		Uart_Rx_Receiving_Processvoid();
		 }
		}
		sprintf(temp1,"val=%s",car_1);
    LCD_SetBackColor(Yellow);
	  LCD_DisplayStringLine(Line1,(unsigned char *)temp1);
		
		sprintf(temp1,"va2=%s",car_2);
    LCD_SetBackColor(Yellow);
	  LCD_DisplayStringLine(Line3,(unsigned char *)temp1);
		
		sprintf(temp1,"va3=%s",car_3);
    LCD_SetBackColor(Yellow);
	  LCD_DisplayStringLine(Line5,(unsigned char *)temp1);
		 
	 
  }

}


void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
//usart.c
#include "usart.h"
UART_HandleTypeDef huart2;
uint8_t rx_porint=0;
uint8_t rx_dat; 
char rx_data[64];
char car_1[10];
char car_2[10];
char car_3[20];


void MX_USART2_UART_Init(void)
{
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 9600;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
    HAL_UART_Receive_IT(&huart2,&rx_dat,1);
}

void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  if(uartHandle->Instance==USART2)
  {
  /* USER CODE BEGIN USART2_MspInit 0 */

  /* USER CODE END USART2_MspInit 0 */

  /** Initializes the peripherals clocks
  */
    PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
    PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
    if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
    {
      Error_Handler();
    }

    /* USART2 clock enable */
    __HAL_RCC_USART2_CLK_ENABLE();

    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**USART2 GPIO Configuration
    PA2     ------> USART2_TX
    PA3     ------> USART2_RX
    */
    GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    GPIO_InitStruct.Alternate = GPIO_AF7_USART2;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* USART2 interrupt Init */
    HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(USART2_IRQn);
  /* USER CODE BEGIN USART2_MspInit 1 */

  /* USER CODE END USART2_MspInit 1 */
  }
}


void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) 
{
	
	 rx_data[rx_porint++]=rx_dat;
	 HAL_UART_Receive_IT(&huart2,&rx_dat,1);
}


void Uart_Rx_Receiving_Processvoid(void)
{
	if(rx_porint>0)
	{
		sscanf(rx_data,"%4s:%4s:%14s",car_1,car_2,car_3);
	}	
	rx_porint = 0;memset(rx_data,0,30);
}

//usart.h
#ifndef __USART_H__
#define __USART_H__
#include "main.h"

extern unsigned char rx_porint;
extern uint8_t rx_dat;
extern char rx_data[64];
extern char car_1[10];
extern char car_2[10];
extern char car_3[20];
extern UART_HandleTypeDef huart2;


void MX_USART2_UART_Init(void);
void Uart_Rx_Receiving_Processvoid(void);


#endif

你可能感兴趣的:(蓝桥杯嵌入式,笔记,stm32,单片机)