yolov8 C++目标检测推理代码上加上关键点输出

1.在yolov8 的目标检测代码上加上关键点解析输出,下载yolov8n-pose.pt转换为onnx格式的 yolov8n-pose.onnx ,输出 1,56,8400

yolov8 C++目标检测推理代码上加上关键点输出_第1张图片

2.在输出结果结构体中加上关键点的集合 kps

yolov8 C++目标检测推理代码上加上关键点输出_第2张图片

3.修改classNums的值获取

yolov8 C++目标检测推理代码上加上关键点输出_第3张图片

4.在推理结果解析的时候,增加关键点信息的输出,这里只取出17个关键点的中的前5个关键点yolov8 C++目标检测推理代码上加上关键点输出_第4张图片

5.在640*640推理的后的坐标信息转换为原图坐标信息

yolov8 C++目标检测推理代码上加上关键点输出_第5张图片

6.在原图中标出最前面的5个关键点

yolov8 C++目标检测推理代码上加上关键点输出_第6张图片

7.运行的效果如下

yolov8 C++目标检测推理代码上加上关键点输出_第7张图片

8.main.cpp

#include 
#include 
#include 
#include 
#include 
#include "cmdline.h"
#include "utils.h"
#include "yolov8Predictor.h"




int main(int argc, char *argv[])
{
    float confThreshold = 0.1f;
    float iouThreshold = 0.2f;

    float maskThreshold = 0.2f;

   

    /*
    bool isGPU = cmd.exist("gpu");
    const std::string classNamesPath = cmd.get("class_names");
    const std::vector classNames = utils::loadNames(classNamesPath);
    const std::string imagePath = cmd.get("image_path");
    const std::string savePath = cmd.get("out_path");
    const std::string suffixName = cmd.get("suffix_name");
    const std::string modelPath = cmd.get("model_path");
    */

    bool isGPU = false;
    std::string classNamesPath;
    std::vectorclassNames;
    std::string imagePath;
    std::string savePath;
    std::string suffixName;
    std::string modelPath;

 
    /*
    if (classNames.empty())
    {
        std::cerr << "Error: Empty class names file." << std::endl;
        return -1;
    }
    if (!std::filesystem::exists(modelPath))
    {
        std::cerr << "Error: There is no model." << std::endl;
        return -1;
    }
    if (!std::filesystem::is_directory(imagePath))
    {
        std::cerr << "Error: There is no model." << std::endl;
        return -1;
    }
    if (!std::filesystem::is_directory(savePath))
    {
        std::filesystem::create_directory(savePath);
    }
    */

    classNames.push_back("r");

   
   
    modelPath = "./yolov8n-pose.onnx";

    YOLOPredictor predictor{nullptr};
    try
    {
        predictor = YOLOPredictor(modelPath, isGPU,
                                  confThreshold,
                                  iouThreshold,
                                  maskThreshold);
        std::cout << "Model was initialized." << std::endl;
    }
    catch (const std::exception &e)
    {
        std::cerr << e.what() << std::endl;
        return -1;
    }
    assert(classNames.size() == predictor.classNums);
    std::regex pattern(".+\\.(jpg|jpeg|png|gif)$");
    std::cout << "Start predicting..." << std::endl;


    cv::VideoCapture capture;



    capture.open(1);
    if (!capture.isOpened()) {
        printf("could not read this video file...\n");
        return -1;
    }
    cv::Size S = cv::Size((int)capture.get(cv::CAP_PROP_FRAME_WIDTH),
        (int)capture.get(cv::CAP_PROP_FRAME_HEIGHT));

    capture.set(cv::CAP_PROP_FRAME_WIDTH, 1280);
    capture.set(cv::CAP_PROP_FRAME_HEIGHT, 1024);


    cv::Mat frame;

    while (capture.read(frame)) {

        clock_t startTime, endTime;
        startTime = clock();

        frame = cv::imread("./person.png");

      
        std::vector result = predictor.predict(frame);
        utils::visualizeDetection(frame, result, classNames);

                
      
        endTime = clock();
        std::cout << "The total run time is: " << (double)(endTime - startTime) / CLOCKS_PER_SEC << "seconds" << std::endl;
       
        cv::imshow("Inference", frame);

        char c = cv::waitKey(1);
        if (c == 27) {
            break;
        }


    }

    return 0;
}

9.utils.cpp

#include "utils.h"

size_t utils::vectorProduct(const std::vector &vector)
{
    if (vector.empty())
        return 0;

    size_t product = 1;
    for (const auto &element : vector)
        product *= element;

    return product;
}

std::wstring utils::charToWstring(const char *str)
{
    typedef std::codecvt_utf8 convert_type;
    std::wstring_convert converter;

    return converter.from_bytes(str);
}

std::vector utils::loadNames(const std::string &path)
{
    // load class names
    std::vector classNames;
    std::ifstream infile(path);
    if (infile.good())
    {
        std::string line;
        while (getline(infile, line))
        {
            if (line.back() == '\r')
                line.pop_back();
            classNames.emplace_back(line);
        }
        infile.close();
    }
    else
    {
        std::cerr << "ERROR: Failed to access class name path: " << path << std::endl;
    }
    // set color
    srand(time(0));

    for (int i = 0; i < 2 * classNames.size(); i++)
    {
        int b = rand() % 256;
        int g = rand() % 256;
        int r = rand() % 256;
        colors.push_back(cv::Scalar(b, g, r));
    }
    return classNames;
}

void utils::visualizeDetection(cv::Mat &im, std::vector &results,
                               const std::vector &classNames)
{
    cv::Mat image = im.clone();
    for (const Yolov8Result &result : results)
    {

        int x = result.box.x;
        int y = result.box.y;

        int x2 = x + result.box.width;
        int y2 = y + result.box.height;

        int conf = (int)std::round(result.conf * 100);
        int classId = result.classId;
        std::string label = classNames[classId] + " 0." + std::to_string(conf);

        int baseline = 0;
        cv::Size size = cv::getTextSize(label, cv::FONT_ITALIC, 0.4, 1, &baseline);
        //image(result.box).setTo(colors[classId + classNames.size()], result.boxMask);
        //cv::rectangle(image, result.box, colors[classId], 2);
        cv::rectangle(image,
                      cv::Point(x, y), cv::Point(x2 , y2),
            cv::Scalar(255, 0, 0), 1);

        cv::circle(image, { (int)std::round(result.kps[0]), (int)std::round(result.kps[1]) }, 5, cv::Scalar(0, 255, 0), -1);
        cv::circle(image, { (int)std::round(result.kps[2]), (int)std::round(result.kps[3]) }, 5, cv::Scalar(0, 255, 0), -1);

        cv::circle(image, { (int)std::round(result.kps[4]), (int)std::round(result.kps[5]) }, 5, cv::Scalar(0, 255, 0), -1);
        cv::circle(image, { (int)std::round(result.kps[6]), (int)std::round(result.kps[7]) }, 5, cv::Scalar(0, 255, 0), -1);
        cv::circle(image, { (int)std::round(result.kps[8]), (int)std::round(result.kps[9]) }, 5, cv::Scalar(0, 255, 0), -1);

        //cv::putText(image, label,
        //            cv::Point(x, y - 3 + 12), cv::FONT_ITALIC,
        //            0.4, cv::Scalar(0, 0, 0), 1);
    }
    cv::addWeighted(im, 0.4, image, 0.6, 0, im);
}

void utils::letterbox(const cv::Mat &image, cv::Mat &outImage,
                      const cv::Size &newShape = cv::Size(640, 640),
                      const cv::Scalar &color = cv::Scalar(114, 114, 114),
                      bool auto_ = true,
                      bool scaleFill = false,
                      bool scaleUp = true,
                      int stride = 32)
{
    cv::Size shape = image.size();
    float r = std::min((float)newShape.height / (float)shape.height,
                       (float)newShape.width / (float)shape.width);
    if (!scaleUp)
        r = std::min(r, 1.0f);

    float ratio[2]{r, r};
    int newUnpad[2]{(int)std::round((float)shape.width * r),
                    (int)std::round((float)shape.height * r)};

    auto dw = (float)(newShape.width - newUnpad[0]);
    auto dh = (float)(newShape.height - newUnpad[1]);

    if (auto_)
    {
        dw = (float)((int)dw % stride);
        dh = (float)((int)dh % stride);
    }
    else if (scaleFill)
    {
        dw = 0.0f;
        dh = 0.0f;
        newUnpad[0] = newShape.width;
        newUnpad[1] = newShape.height;
        ratio[0] = (float)newShape.width / (float)shape.width;
        ratio[1] = (float)newShape.height / (float)shape.height;
    }

    dw /= 2.0f;
    dh /= 2.0f;

    if (shape.width != newUnpad[0] && shape.height != newUnpad[1])
    {
        cv::resize(image, outImage, cv::Size(newUnpad[0], newUnpad[1]));
    }

    int top = int(std::round(dh - 0.1f));
    int bottom = int(std::round(dh + 0.1f));
    int left = int(std::round(dw - 0.1f));
    int right = int(std::round(dw + 0.1f));
    cv::copyMakeBorder(outImage, outImage, top, bottom, left, right, cv::BORDER_CONSTANT, color);
}

void utils::scaleCoords(cv::Rect &coords,
                        cv::Mat &mask,
                        const float maskThreshold,
                        const cv::Size &imageShape,
                        const cv::Size &imageOriginalShape,
                        std::vector& kps)
{
    float gain = std::min((float)imageShape.height / (float)imageOriginalShape.height,
                          (float)imageShape.width / (float)imageOriginalShape.width);

    int pad[2] = {(int)(((float)imageShape.width - (float)imageOriginalShape.width * gain) / 2.0f),
                  (int)(((float)imageShape.height - (float)imageOriginalShape.height * gain) / 2.0f)};

    coords.x = (int)std::round(((float)(coords.x - pad[0]) / gain));
    coords.x = std::max(0, coords.x);
    coords.y = (int)std::round(((float)(coords.y - pad[1]) / gain));
    coords.y = std::max(0, coords.y);

    //keypoint1
    kps[0] = (int)std::round(((float)(kps[0] - pad[0]) / gain));
    kps[0] = std::max(0,(int)kps[0]);

    kps[1] = (int)std::round(((float)(kps[1] - pad[1]) / gain));
    kps[1] = std::max(0, (int)kps[1]);

    //keypoint2
    kps[2] = (int)std::round(((float)(kps[2] - pad[0]) / gain));
    kps[2] = std::max(0, (int)kps[2]);

    kps[3] = (int)std::round(((float)(kps[3] - pad[1]) / gain));
    kps[3] = std::max(0, (int)kps[3]);

    //keyponit3
    kps[4] = (int)std::round(((float)(kps[4] - pad[0]) / gain));
    kps[4] = std::max(0, (int)kps[4]);

    kps[5] = (int)std::round(((float)(kps[5] - pad[1]) / gain));
    kps[5] = std::max(0, (int)kps[5]);

    //keyponit4
    kps[6] = (int)std::round(((float)(kps[6] - pad[0]) / gain));
    kps[6] = std::max(0, (int)kps[6]);

    kps[7] = (int)std::round(((float)(kps[7] - pad[1]) / gain));
    kps[7] = std::max(0, (int)kps[7]);


    //keyponit5
    kps[8] = (int)std::round(((float)(kps[8] - pad[0]) / gain));
    kps[8] = std::max(0, (int)kps[8]);

    kps[9] = (int)std::round(((float)(kps[9] - pad[1]) / gain));
    kps[9] = std::max(0, (int)kps[9]);

    coords.width = (int)std::round(((float)coords.width / gain));
    coords.width = std::min(coords.width, imageOriginalShape.width - coords.x);
    coords.height = (int)std::round(((float)coords.height / gain));
    coords.height = std::min(coords.height, imageOriginalShape.height - coords.y);
    mask = mask(cv::Rect(pad[0], pad[1], imageShape.width - 2 * pad[0], imageShape.height - 2 * pad[1]));

    //cv::resize(mask, mask, imageOriginalShape, cv::INTER_LINEAR);

    //mask = mask(coords) > maskThreshold;
}
template 
T utils::clip(const T &n, const T &lower, const T &upper)
{
    return std::max(lower, std::min(n, upper));
}

10.yolov8Predictor.cpp

#include "yolov8Predictor.h"

YOLOPredictor::YOLOPredictor(const std::string &modelPath,
                             const bool &isGPU,
                             float confThreshold,
                             float iouThreshold,
                             float maskThreshold)
{
    this->confThreshold = confThreshold;
    this->iouThreshold = iouThreshold;
    this->maskThreshold = maskThreshold;
    env = Ort::Env(OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING, "YOLOV8");
    sessionOptions = Ort::SessionOptions();

    std::vector availableProviders = Ort::GetAvailableProviders();
    auto cudaAvailable = std::find(availableProviders.begin(), availableProviders.end(), "CUDAExecutionProvider");
    OrtCUDAProviderOptions cudaOption;

    if (isGPU && (cudaAvailable == availableProviders.end()))
    {
        std::cout << "GPU is not supported by your ONNXRuntime build. Fallback to CPU." << std::endl;
        std::cout << "Inference device: CPU" << std::endl;
    }
    else if (isGPU && (cudaAvailable != availableProviders.end()))
    {
        std::cout << "Inference device: GPU" << std::endl;
        sessionOptions.AppendExecutionProvider_CUDA(cudaOption);
    }
    else
    {
        std::cout << "Inference device: CPU" << std::endl;
    }

#ifdef _WIN32
    std::wstring w_modelPath = utils::charToWstring(modelPath.c_str());
    session = Ort::Session(env, w_modelPath.c_str(), sessionOptions);
#else
    session = Ort::Session(env, modelPath.c_str(), sessionOptions);
#endif
    const size_t num_input_nodes = session.GetInputCount();   //==1
    const size_t num_output_nodes = session.GetOutputCount(); //==1,2
    if (num_output_nodes > 1)
    {
        this->hasMask = true;
        std::cout << "Instance Segmentation" << std::endl;
    }
    else
        std::cout << "Object Detection" << std::endl;

    Ort::AllocatorWithDefaultOptions allocator;
    for (int i = 0; i < num_input_nodes; i++)
    {
        auto input_name = session.GetInputNameAllocated(i, allocator);
        this->inputNames.push_back(input_name.get());
        input_names_ptr.push_back(std::move(input_name));

        Ort::TypeInfo inputTypeInfo = session.GetInputTypeInfo(i);
        std::vector inputTensorShape = inputTypeInfo.GetTensorTypeAndShapeInfo().GetShape();
        this->inputShapes.push_back(inputTensorShape);
        this->isDynamicInputShape = false;
        // checking if width and height are dynamic
        if (inputTensorShape[2] == -1 && inputTensorShape[3] == -1)
        {
            std::cout << "Dynamic input shape" << std::endl;
            this->isDynamicInputShape = true;
        }
    }
    for (int i = 0; i < num_output_nodes; i++)
    {
        auto output_name = session.GetOutputNameAllocated(i, allocator);
        this->outputNames.push_back(output_name.get());
        output_names_ptr.push_back(std::move(output_name));

        Ort::TypeInfo outputTypeInfo = session.GetOutputTypeInfo(i);
        std::vector outputTensorShape = outputTypeInfo.GetTensorTypeAndShapeInfo().GetShape();
        this->outputShapes.push_back(outputTensorShape);
        if (i == 0)
        {
            if (!this->hasMask)
                classNums = outputTensorShape[1] - 4 - 17*3;
            else
                classNums = outputTensorShape[1] - 4 - 32;
        }
    }
    // for (const char *x : this->inputNames)
    // {
    //     std::cout << x << std::endl;
    // }
    // for (const char *x : this->outputNames)
    // {
    //     std::cout << x << std::endl;
    // }
    // std::cout << classNums << std::endl;
}

void YOLOPredictor::getBestClassInfo(std::vector::iterator it,
                                     float &bestConf,
                                     int &bestClassId,
                                     const int _classNums)
{
    // first 4 element are box
    bestClassId = 4;
    bestConf = 0;

    for (int i = 4; i < _classNums + 4; i++)
    {
        if (it[i] > bestConf)
        {
            bestConf = it[i];
            bestClassId = i - 4;
        }
    }
}
cv::Mat YOLOPredictor::getMask(const cv::Mat &maskProposals,
                               const cv::Mat &maskProtos)
{
    cv::Mat protos = maskProtos.reshape(0, {(int)this->outputShapes[1][1], (int)this->outputShapes[1][2] * (int)this->outputShapes[1][3]});

    cv::Mat matmul_res = (maskProposals * protos).t();
    cv::Mat masks = matmul_res.reshape(1, {(int)this->outputShapes[1][2], (int)this->outputShapes[1][3]});
    cv::Mat dest;

    // sigmoid
    cv::exp(-masks, dest);
    dest = 1.0 / (1.0 + dest);
    cv::resize(dest, dest, cv::Size((int)this->inputShapes[0][2], (int)this->inputShapes[0][3]), cv::INTER_LINEAR);
    return dest;
}

void YOLOPredictor::preprocessing(cv::Mat &image, float *&blob, std::vector &inputTensorShape)
{
    cv::Mat resizedImage, floatImage;
    cv::cvtColor(image, resizedImage, cv::COLOR_BGR2RGB);
    utils::letterbox(resizedImage, resizedImage, cv::Size((int)this->inputShapes[0][2], (int)this->inputShapes[0][3]),
                     cv::Scalar(114, 114, 114), this->isDynamicInputShape,
                     false, true, 32);

    inputTensorShape[2] = resizedImage.rows;
    inputTensorShape[3] = resizedImage.cols;

    resizedImage.convertTo(floatImage, CV_32FC3, 1 / 255.0);
    blob = new float[floatImage.cols * floatImage.rows * floatImage.channels()];
    cv::Size floatImageSize{floatImage.cols, floatImage.rows};

    // hwc -> chw
    std::vector chw(floatImage.channels());
    for (int i = 0; i < floatImage.channels(); ++i)
    {
        chw[i] = cv::Mat(floatImageSize, CV_32FC1, blob + i * floatImageSize.width * floatImageSize.height);
    }
    cv::split(floatImage, chw);
}

std::vector YOLOPredictor::postprocessing(const cv::Size &resizedImageShape,
                                                        const cv::Size &originalImageShape,
                                                        std::vector &outputTensors)
{

    // for box
    std::vector boxes;
    std::vector confs;
    std::vector classIds;
    std::vector> kpss;

    float *boxOutput = outputTensors[0].GetTensorMutableData();
    //[1,4+n,8400]=>[1,8400,4+n] or [1,4+n+32,8400]=>[1,8400,4+n+32]
    cv::Mat output0 = cv::Mat(cv::Size((int)this->outputShapes[0][2], (int)this->outputShapes[0][1]), CV_32F, boxOutput).t();
    float *output0ptr = (float *)output0.data;
    int rows = (int)this->outputShapes[0][2];
    int cols = (int)this->outputShapes[0][1];
    // std::cout << rows << cols << std::endl;
    // if hasMask
    std::vector> picked_proposals;
    cv::Mat mask_protos;

    for (int i = 0; i < rows; i++)
    {
        std::vector it(output0ptr + i * cols, output0ptr + (i + 1) * cols);
        float confidence;
        int classId;
        this->getBestClassInfo(it.begin(), confidence, classId, classNums);

        if (confidence > this->confThreshold)
        {
            std::vector kps;
            if (this->hasMask)
            {
                std::vector temp(it.begin() + 4 + classNums, it.end());
                picked_proposals.push_back(temp);
            }
            int centerX = (int)(it[0]);
            int centerY = (int)(it[1]);
            int width = (int)(it[2]);
            int height = (int)(it[3]);
            int left = centerX - width / 2;
            int top = centerY - height / 2;
            boxes.emplace_back(left, top, width, height);
            confs.emplace_back(confidence);
            classIds.emplace_back(classId);

            //keypoint1
            kps.emplace_back(it[5]);
            kps.emplace_back(it[6]);

            //keypoint2
            kps.emplace_back(it[8]);
            kps.emplace_back(it[9]);

            //keypoint3
            kps.emplace_back(it[11]);
            kps.emplace_back(it[12]);

            //keypoint4
            kps.emplace_back(it[14]);
            kps.emplace_back(it[15]);


            //keypoint5
            kps.emplace_back(it[17]);
            kps.emplace_back(it[18]);

            kpss.emplace_back(kps);

        }
    }

    std::vector indices;
    cv::dnn::NMSBoxes(boxes, confs, this->confThreshold, this->iouThreshold, indices);

    if (this->hasMask)
    {
        float *maskOutput = outputTensors[1].GetTensorMutableData();
        std::vector mask_protos_shape = {1, (int)this->outputShapes[1][1], (int)this->outputShapes[1][2], (int)this->outputShapes[1][3]};
        mask_protos = cv::Mat(mask_protos_shape, CV_32F, maskOutput);
    }

    std::vector results;
    for (int idx : indices)
    {
        Yolov8Result res;
        res.box = cv::Rect(boxes[idx]);
        if (this->hasMask)
            res.boxMask = this->getMask(cv::Mat(picked_proposals[idx]).t(), mask_protos);
        else
            res.boxMask = cv::Mat::zeros((int)this->inputShapes[0][2], (int)this->inputShapes[0][3], CV_8U);

        res.kps = kpss[idx];
        utils::scaleCoords(res.box, res.boxMask, this->maskThreshold, resizedImageShape, originalImageShape, res.kps);
        res.conf = confs[idx];
        res.classId = classIds[idx];
        
        results.emplace_back(res);
    }

    return results;
}

std::vector YOLOPredictor::predict(cv::Mat &image)
{
    float *blob = nullptr;
    std::vector inputTensorShape{1, 3, -1, -1};
    this->preprocessing(image, blob, inputTensorShape);

    size_t inputTensorSize = utils::vectorProduct(inputTensorShape);

    std::vector inputTensorValues(blob, blob + inputTensorSize);

    std::vector inputTensors;

    Ort::MemoryInfo memoryInfo = Ort::MemoryInfo::CreateCpu(
        OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);

    inputTensors.push_back(Ort::Value::CreateTensor(
        memoryInfo, inputTensorValues.data(), inputTensorSize,
        inputTensorShape.data(), inputTensorShape.size()));

    std::vector outputTensors = this->session.Run(Ort::RunOptions{nullptr},
                                                              this->inputNames.data(),
                                                              inputTensors.data(),
                                                              1,
                                                              this->outputNames.data(),
                                                              this->outputNames.size());

    cv::Size resizedShape = cv::Size((int)inputTensorShape[3], (int)inputTensorShape[2]);
    std::vector result = this->postprocessing(resizedShape,
                                                            image.size(),
                                                            outputTensors);

    delete[] blob;

    return result;
}

注:原始的目标检测代码来自网上,在此基础上增加关键点检测代码。

你可能感兴趣的:(AI,YOLO,目标检测,人工智能)