距上一次写文章有点时间了,今天调通了一块MIPI DSI屏幕, 特写一篇笔记置于此,希望能帮到也想研究这个MIPI DSI的朋友。
博主使用的开发板为Raspbery Pi 4B
,系统为Raspberry Pi OS 64Bit
(full版本)。
博主测试了一下各个版本的Raspberry Pi OS
对于DRM驱动的兼容性,发现驱动只能在Raspberry Pi OS 11(bullseye)
版本以上运行,之前的旧版本系统博主测试过了均不能使用。推测原因是因为旧版本系统使用的legacy GL driver
不兼容drm
,即使在raspi-config
中启用了fakekms
驱动也不能运行,kernel报出一长串错误。博主使用的系统版本为2022年1月28日发布的Raspberry Pi OS 64Bit
正式版,经测试该系统能正常驱动屏幕。
*32位版也可以正常使用该驱动。
博主使用的屏幕是一块2.8寸的IPS屏幕,MIPI接口,驱动IC是ST7701S,分辨率是480*640。
为避免广告嫌疑,这里就不放链接了。
博主拿到屏幕后,也拿到了商家提供的初始化代码和屏幕信息,我们主要关注这两个部分:
我们要从这两张图中提取到关键的信息。
首先第一张图中我们可以得出来引脚定义,后面需要根据它来lay板子。
还能从第一张图中得知,我们的屏幕是1 Lane的。
第二张图中则包含了关键的初始化序列,我们需要用它来初始化我们的屏幕。
好了,基本信息都齐了,开干。
打开终端,安装一下raspberrypi-kernel-headers
:
sudo apt install raspberrypi-kernel-headers
P.S.如果安装的内核头文件不是您现在使用的内核的版本,那您需要自行下载符合您目前内核版本的内核头文件,或者从(内核)源码编译。如果您无法找到需要的内核头文件(换句话说,必须得从[内核]源码编译了),请您参考博主的上一篇文章 嵌入式Linux使用TFT屏幕:使用TinyDRM点亮ST7789V屏幕 中的从内核源码编译
章节。
然后我们建个文件夹,就取名叫w280bf036i
:
mkdir w280bf036i
然后在那个文件夹中编写我们的驱动源码(panel-wlk-w280bf036i.c
):
/*
** Copyright (C) 2022 CNflysky. All rights reserved.
** Kernel DRM driver for W280BF036I LCD Panel in DSI interface.
** Driver IC: ST7701
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
struct w280bf036i_panel_desc {
const struct drm_display_mode *mode;
unsigned int lanes;
unsigned long flags;
enum mipi_dsi_pixel_format format;
};
struct w280bf036i {
struct drm_panel panel;
struct mipi_dsi_device *dsi;
const struct w280bf036i_panel_desc *desc;
struct gpio_desc *reset;
};
static inline struct w280bf036i *panel_to_w280bf036i(struct drm_panel *panel) {
return container_of(panel, struct w280bf036i, panel);
}
static inline int w280bf036i_dsi_write(struct w280bf036i *w280bf036i,
const void *seq, size_t len) {
return mipi_dsi_dcs_write_buffer(w280bf036i->dsi, seq, len);
}
#define w280bf036i_command(w280bf036i, seq...) \
{ \
const uint8_t d[] = {seq}; \
w280bf036i_dsi_write(w280bf036i, d, ARRAY_SIZE(d)); \
}
static void w280bf036i_init_sequence(struct w280bf036i *w280bf036i) {
// Command2 BK3 Selection: Enable the BK function of Command2
w280bf036i_command(w280bf036i, 0xFF, 0x77, 0x01, 0x00, 0x00, 0x13);
// Unknown
w280bf036i_command(w280bf036i, 0xEF, 0x08);
// Command2 BK0 Selection: Disable the BK function of Command2
w280bf036i_command(w280bf036i, 0xFF, 0x77, 0x01, 0x00, 0x00, 0x10);
// Display Line Setting
w280bf036i_command(w280bf036i, 0xC0, 0x4f, 0x00);
// Porch Control
w280bf036i_command(w280bf036i, 0xC1, 0x10, 0x0c);
// Inversion selection & Frame Rate Control
w280bf036i_command(w280bf036i, 0xC2, 0x07, 0x14);
// Unknown
w280bf036i_command(w280bf036i, 0xCC, 0x10);
// Positive Voltage Gamma Control
w280bf036i_command(w280bf036i, 0xB0, 0x0a, 0x18, 0x1e, 0x12, 0x16, 0x0c, 0x0e,
0x0d, 0x0c, 0x29, 0x06, 0x14, 0x13, 0x29, 0x33, 0x1c);
// Negative Voltage Gamma Control
w280bf036i_command(w280bf036i, 0xB1, 0x0a, 0x19, 0x21, 0x0a, 0x0c, 0x00, 0x0c,
0x03, 0x03, 0x23, 0x01, 0x0e, 0x0c, 0x27, 0x2b, 0x1c);
// Command2 BK1 Selection: Enable the BK function of Command2
w280bf036i_command(w280bf036i, 0xFF, 0x77, 0x01, 0x00, 0x00, 0x11);
// Vop Amplitude setting
w280bf036i_command(w280bf036i, 0xB0, 0x5d);
// VCOM amplitude setting
w280bf036i_command(w280bf036i, 0xB1, 0x61);
// VGH Voltage setting
w280bf036i_command(w280bf036i, 0xB2, 0x84);
// TEST Command Setting
w280bf036i_command(w280bf036i, 0xB3, 0x80);
// VGL Voltage setting
w280bf036i_command(w280bf036i, 0xB5, 0x4d);
// Power Control 1
w280bf036i_command(w280bf036i, 0xB7, 0x85);
// Power Control 2
w280bf036i_command(w280bf036i, 0xB8, 0x20);
// Source pre_drive timing set1
w280bf036i_command(w280bf036i, 0xC1, 0x78);
// Source EQ2 Setting
w280bf036i_command(w280bf036i, 0xC2, 0x78);
// MIPI Setting 1
w280bf036i_command(w280bf036i, 0xD0, 0x88);
// Sunlight Readable Enhancement
w280bf036i_command(w280bf036i, 0xE0, 0x00, 0x00, 0x02);
// Noise Reduce Control
w280bf036i_command(w280bf036i, 0xE1, 0x06, 0xa0, 0x08, 0xa0, 0x05, 0xa0, 0x07,
0xa0, 0x00, 0x44, 0x44);
// Sharpness Control
w280bf036i_command(w280bf036i, 0xE2, 0x20, 0x20, 0x44, 0x44, 0x96, 0xa0, 0x00,
0x00, 0x96, 0xa0, 0x00, 0x00);
// Color Calibration Control
w280bf036i_command(w280bf036i, 0xE3, 0x00, 0x00, 0x22, 0x22);
// Skin Tone Preservation Control
w280bf036i_command(w280bf036i, 0xE4, 0x44, 0x44);
w280bf036i_command(w280bf036i, 0xE5, 0x0d, 0x91, 0xa0, 0xa0, 0x0f, 0x93, 0xa0,
0xa0, 0x09, 0x8d, 0xa0, 0xa0, 0x0b, 0x8f, 0xa0, 0xa0);
w280bf036i_command(w280bf036i, 0xE6, 0x00, 0x00, 0x22, 0x22);
w280bf036i_command(w280bf036i, 0xE7, 0x44, 0x44);
w280bf036i_command(w280bf036i, 0xE8, 0x0c, 0x90, 0xa0, 0xa0, 0x0e, 0x92, 0xa0,
0xa0, 0x08, 0x8c, 0xa0, 0xa0, 0x0a, 0x8e, 0xa0, 0xa0);
w280bf036i_command(w280bf036i, 0xE9, 0x36, 0x00);
w280bf036i_command(w280bf036i, 0xEB, 0x00, 0x01, 0xe4, 0xe4, 0x44, 0x88,
0x40);
w280bf036i_command(w280bf036i, 0xED, 0xff, 0x45, 0x67, 0xfa, 0x01, 0x2b, 0xcf,
0xff, 0xff, 0xfc, 0xb2, 0x10, 0xaf, 0x76, 0x54, 0xff);
w280bf036i_command(w280bf036i, 0xEF, 0x10, 0x0d, 0x04, 0x08, 0x3f, 0x1f);
/* disable Command2 */
// w280bf036i_command(w280bf036i, 0xFF, 0x77, 0x01, 0x00, 0x00, 0x00);
}
static int w280bf036i_prepare(struct drm_panel *panel) {
struct w280bf036i *w280bf036i = panel_to_w280bf036i(panel);
gpiod_set_value(w280bf036i->reset, 0);
msleep(50);
gpiod_set_value(w280bf036i->reset, 1);
msleep(150);
mipi_dsi_dcs_soft_reset(w280bf036i->dsi);
msleep(5);
w280bf036i_init_sequence(w280bf036i);
mipi_dsi_dcs_set_tear_on(w280bf036i->dsi, MIPI_DSI_DCS_TEAR_MODE_VBLANK);
mipi_dsi_dcs_exit_sleep_mode(w280bf036i->dsi);
return 0;
}
static int w280bf036i_enable(struct drm_panel *panel) {
return mipi_dsi_dcs_set_display_on(panel_to_w280bf036i(panel)->dsi);
}
static int w280bf036i_disable(struct drm_panel *panel) {
return mipi_dsi_dcs_set_display_off(panel_to_w280bf036i(panel)->dsi);
}
static int w280bf036i_unprepare(struct drm_panel *panel) {
struct w280bf036i *w280bf036i = panel_to_w280bf036i(panel);
mipi_dsi_dcs_enter_sleep_mode(w280bf036i->dsi);
gpiod_set_value(w280bf036i->reset, 0);
return 0;
}
static int w280bf036i_get_modes(struct drm_panel *panel,
struct drm_connector *connector) {
struct w280bf036i *w280bf036i = panel_to_w280bf036i(panel);
const struct drm_display_mode *desc_mode = w280bf036i->desc->mode;
struct drm_display_mode *mode;
mode = drm_mode_duplicate(connector->dev, desc_mode);
if (!mode) {
dev_err(&w280bf036i->dsi->dev, "failed to add mode %ux%u@%u\n",
desc_mode->hdisplay, desc_mode->vdisplay,
drm_mode_vrefresh(desc_mode));
return -ENOMEM;
}
drm_mode_set_name(mode);
drm_mode_probed_add(connector, mode);
connector->display_info.width_mm = desc_mode->width_mm;
connector->display_info.height_mm = desc_mode->height_mm;
return 1;
}
static const struct drm_panel_funcs w280bf036i_funcs = {
.disable = w280bf036i_disable,
.unprepare = w280bf036i_unprepare,
.prepare = w280bf036i_prepare,
.enable = w280bf036i_enable,
.get_modes = w280bf036i_get_modes,
};
static const struct drm_display_mode w280bf036i_mode = {
.clock = 25000,
.hdisplay = 480,
.hsync_start = 480 + /* HFP */ 10,
.hsync_end = 480 + 10 + /* HSync */ 4,
.htotal = 480 + 10 + 4 + /* HBP */ 20,
.vdisplay = 640,
.vsync_start = 640 + /* VFP */ 8,
.vsync_end = 640 + 8 + /* VSync */ 4,
.vtotal = 640 + 8 + 4 + /* VBP */ 14,
.width_mm = 43,
.height_mm = 57,
.type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
};
static const struct w280bf036i_panel_desc w280bf036i_desc = {
.mode = &w280bf036i_mode,
.lanes = 1,
.flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST,
.format = MIPI_DSI_FMT_RGB888,
};
static int w280bf036i_dsi_probe(struct mipi_dsi_device *dsi) {
struct w280bf036i *w280bf036i =
devm_kzalloc(&dsi->dev, sizeof(*w280bf036i), GFP_KERNEL);
if (!w280bf036i) return -ENOMEM;
const struct w280bf036i_panel_desc *desc =
of_device_get_match_data(&dsi->dev);
dsi->mode_flags = desc->flags;
dsi->format = desc->format;
dsi->lanes = desc->lanes;
w280bf036i->reset = devm_gpiod_get(&dsi->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(w280bf036i->reset)) {
dev_err(&dsi->dev, "Couldn't get our reset GPIO\n");
return PTR_ERR(w280bf036i->reset);
}
drm_panel_init(&w280bf036i->panel, &dsi->dev, &w280bf036i_funcs,
DRM_MODE_CONNECTOR_DSI);
int ret = drm_panel_of_backlight(&w280bf036i->panel);
if (ret) return ret;
drm_panel_add(&w280bf036i->panel);
mipi_dsi_set_drvdata(dsi, w280bf036i);
w280bf036i->dsi = dsi;
w280bf036i->desc = desc;
return mipi_dsi_attach(dsi);
}
static int w280bf036i_dsi_remove(struct mipi_dsi_device *dsi) {
struct w280bf036i *w280bf036i = mipi_dsi_get_drvdata(dsi);
mipi_dsi_detach(dsi);
drm_panel_remove(&w280bf036i->panel);
return 0;
}
static const struct of_device_id w280bf036i_of_match[] = {
{.compatible = "wlk,w280bf036i", .data = &w280bf036i_desc}, {}};
MODULE_DEVICE_TABLE(of, w280bf036i_of_match);
static struct mipi_dsi_driver w280bf036i_dsi_driver = {
.probe = w280bf036i_dsi_probe,
.remove = w280bf036i_dsi_remove,
.driver =
{
.name = "w280bf036i",
.of_match_table = w280bf036i_of_match,
},
};
module_mipi_dsi_driver(w280bf036i_dsi_driver);
MODULE_AUTHOR("[email protected]");
MODULE_DESCRIPTION("WLK w280bf036i LCD Panel Driver");
MODULE_LICENSE("GPL");
好了,驱动代码编写完成,我们来解析一下这个代码:
首先在static void w280bf036i_init_sequence
函数里面,我们填入了厂家所给的初始化代码:
static void w280bf036i_init_sequence(struct w280bf036i *w280bf036i) {
w280bf036i_command(w280bf036i, MIPI_DCS_SOFT_RESET, 0x00);
/* We need to wait 5ms before sending new commands */
msleep(5);
w280bf036i_command(w280bf036i, MIPI_DCS_EXIT_SLEEP_MODE, 0x00);
// Command2 BK3 Selection: Enable the BK function of Command2
w280bf036i_command(w280bf036i, 0xFF, 0x77, 0x01, 0x00, 0x00, 0x13);
// Your initial code here...
}
然后在w280bf036i_mode
这个结构体中,我们填上屏幕的Porch参数:
static const struct drm_display_mode w280bf036i_mode = {
.clock = 25000,
.hdisplay = 480,
.hsync_start = 480 + /* HFP */ 10,
.hsync_end = 480 + 10 + /* HSync */ 4,
.htotal = 480 + 10 + 4 + /* HBP */ 20,
.vdisplay = 640,
.vsync_start = 640 + /* VFP */ 8,
.vsync_end = 640 + 8 + /* VSync */ 4,
.vtotal = 640 + 8 + 4 + /* VBP */ 14,
.width_mm = 43,
.height_mm = 57,
.type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
};
最后,在w280bf036i_desc
这个结构体中,我们填上屏幕的lane数量:
static const struct w280bf036i_panel_desc w280bf036i_desc = {
.mode = &w280bf036i_mode,
.lanes = 1,
.flags = MIPI_DSI_MODE_VIDEO,
.format = MIPI_DSI_FMT_RGB888,
};
然后在当前目录下,编写Makefile
:
obj-m += panel-wlk-w280bf036i.o
all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
最后,我们执行make
命令,编译模块:
make
编译完成后,目录下会出现多个文件,确保有panel-wlk-w280bf036i.ko
即可。
驱动编写完毕,我们还需要设备树用来探测(Probe
)设备,编写设备树代码(vc4-kms-dsi-w280bf036i.dts
)如下:
// compile: dtc -@ -I dts -O dtb -o vc4-kms-dsi-w280bf036i.dtbo vc4-kms-dsi-w280bf036i.dts
/dts-v1/;
/plugin/;
/ {
compatible = "brcm,bcm2835";
fragment@0 {
target = <&dsi1>;
__overlay__{
status = "okay";
#address-cells = <1>;
#size-cells = <0>;
port {
dsi_out_port:endpoint {
remote-endpoint = <&panel_dsi_port>;
};
};
w280bf036i:w280bf036i@0 {
compatible = "wlk,w280bf036i";
status = "okay";
reg = <0>;
reset-gpios = <&gpio 47 1>; // Dummy GPIO , Unused
port {
panel_dsi_port: endpoint {
remote-endpoint = <&dsi_out_port>;
};
};
};
};
};
fragment@1 {
target = <&gpio>;
__overlay__ {
w280bf036i_pins: w280bf036i_pins {
brcm,pins = <47>;
brcm,function = <1>; // out
brcm,pull = <0>; // off
};
};
};
fragment@2 {
target = <&i2c_csi_dsi>;
__overlay__ {
#address-cells = <1>;
#size-cells = <0>;
status = "okay";
};
};
};
我的转接板设计为DSI的I2C SCL脚用于连接Reset,故使用45号引脚作为Reset PIN.
P.S. 该设计有问题,不应该将I2C引脚作为GPIO使用,应加一颗I2C转GPIO芯片(如PCA9536
)。
P.P.S. 因为转接板虽然打好了,但是TMD元件还没到,所以先把I2C接口启用了让44和45都高电平阻止屏幕复位,等元件到了会更新的…
dtc -@ -I dts -O dtb -o vc4-kms-dsi-w280bf036i.dtbo vc4-kms-dsi-w280bf036i.dts
sudo cp vc4-kms-dsi-w280bf036i.dtbo /boot/overlays/
sudo cp panel-wlk-w280bf036i.ko /lib/modules/`uname -r`/kernel/drivers/gpu/drm/panel
sudo depmod
echo "ignore_lcd=1" >> /boot/config.txt
echo "dtoverlay=vc4-kms-dsi-w280bf036i" >> /boot/config.txt
sudo reboot
执行完上面的命令,板子重启之后,屏幕上就能显示树莓派桌面了。
由于初始化代码或者是博主的layout有些问题,屏幕的显示效果不太正常,待再次调整。
不过,这个屏幕跑UFOTest居然能跑到80帧,还是挺令人意外的
本文所用的所有代码都能在这里找到: GitHub链接