具体算法理论参照<<算法导论>>,还有一个能可视化显示红黑树结构和操作的网站https://www.cs.usfca.edu/~galles/visualization/RedBlack.html,以下是我参照算导实现的红黑树源码,花了接近一天.
评估
随机插入100000个数和stl set得到的结果一致,且比它快1倍.因此没有明显bug.
心得
红黑树插入时只做两次旋转,高度为2log(N),性能还是挺优秀的.但有两点,第一个非递归,第二个插入情况三种,删除情况4种.编码复杂度相当大,实现了它才能感受到treap和splay的美好
#include
#include
#include
#include
#define RED false
#define BLACK true
const int MAXN = 1e5+1e3;
struct Node{
int key;
bool color;
Node *ch[2], *p;
int cmp(Node* b) {
return b->key > key;
}
};
struct RBTree{
Node pool[MAXN];
int sz;
Node *root, *nil;
RBTree() {
clear();
}
void clear() {
sz = 0;
nil = pool;
nil->color = BLACK;
root = nil;
root->p = nil;
sz = 0;
}
Node* newNode(int v) {
Node *ret = &pool[++sz];
ret->key = v;
ret->ch[0] = ret->ch[1] = nil;
ret->color = RED;
return ret;
}
void rotate(Node* x, int d) { // 0 left, 1 right
Node *y = x->ch[d^1];
if(y->ch[d]!=nil) {
y->ch[d]->p = x;
}
x->ch[d^1] = y->ch[d];
y->p = x->p;
if(y->p==nil) {
root = y;
} else {
y->p->ch[y->p->cmp(y)] = y;
}
x->p = y;
y->ch[d] = x;
}
void fixinsert(Node* x) {
while(x->p->color==RED) {
Node* pp = x->p->p;
Node* uncle = pp->ch[pp->cmp(x)^1];
if(uncle->color==RED) {
pp->color=RED;
uncle->color=BLACK;
x->p->color=BLACK;
x = pp;
} else {
if(x->p->cmp(x)!=pp->cmp(x->p)) {
int d = x->p->cmp(x);
x = x->p;
rotate(x, d^1);
}
x->p->color = BLACK;
pp->color = RED;
rotate(pp,pp->cmp(x->p)^1);
}
}
root->color = BLACK;
}
void insert(int k) {
Node *z = newNode(k);
Node *x = root, *y=nil;
while(x!=nil) {
y = x;
x = x->ch[x->cmp(z)];
}
z->p = y;
if(y==nil) {
root=z;
return;
} else {
y->ch[y->cmp(z)] = z;
}
fixinsert(x);
}
Node* find(int k) {
Node *x = root;
while(x!=nil&&x->key!=k) {
if(k>x->key) x=x->ch[1];
else x=x->ch[0];
}
return x;
}
void transpant(Node* u, Node* v) {
if(u->p==nil) {
root = v;
} else {
u->p->ch[u->p->cmp(u)] = v;
}
v-> p = u->p; // nil v also need
}
Node* min(Node* x) {
if(x==nil) return x;
while(x->ch[0]!=nil) {
x=x->ch[0];
}
return x;
}
void fixdel(Node* x) {
while(x!=root&&x->color==BLACK) {
int d = x->p->ch[1]==x;
Node* w= x->p->ch[d^1];
if(w->color==RED) {
w->color = BLACK;
x->p->color = RED;
rotate(x->p, d);
w=x->p->ch[d^1];
}
if(w->ch[0]->color==BLACK&&w->ch[1]->color==BLACK) {
w->color=RED;
x = x->p;
}
else {
if(w->ch[d^1]->color==BLACK) {
w->ch[d]->color = BLACK;
w->color=RED;
rotate(w, d^1);
w = x->p->ch[d^1];
}
x->p->color = BLACK;
w->color = RED;
w->ch[d^1]->color = BLACK;
rotate(x->p, d);
x = root;
}
}
x->color = BLACK;
}
void remove(Node* z) {
Node *y=z, *x=nil;
bool origincolor = y->color;
if(y->ch[0]==nil) {
x=y->ch[1];
transpant(y,x);
} else if(y->ch[1]==nil) {
x=y->ch[0];
transpant(y,x);
} else {
y = min(z->ch[1]);
x = y->ch[1];
if(y->p!=z) {
transpant(y,x);
y->ch[1] = z->ch[1];
y->ch[1]->p = y;
}
y->ch[0] = z->ch[0];
y->ch[0]->p = y;
y->color = z->color;
transpant(z,y);
}
if(origincolor==BLACK) {
fixdel(x);
}
}
void remove(int k) {
Node* x= find(k);
if(x!=nil) remove(x);
}
}rbt;
int a[MAXN], n=MAXN-10;
int main() {
int sz = n;
for(int i=0; ikey;
printf("%d\n", v);
rbt.remove(v);
}
return 0;
}