python识别图片中数字_Python Opencv识别两张相似图片

在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。

当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向。

看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现。

相关背景

要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照。风景照中,是沙漠还是海洋,人物照中,两个人是不是都是国字脸,还是瓜子脸(还是倒瓜子脸……哈哈……)。

那么从机器的角度来说也是这样的,先识别图像的特征,然后再相比。

很显然,在没有经过训练的计算机(即建立模型),那么计算机很难区分什么是海洋,什么是沙漠。但是计算机很容易识别到图像的像素值。

因此,在图像识别中,颜色特征是最为常用的。(其余常用的特征还有纹理特征、形状特征和空间关系特征等)

其中又分为

直方图

颜色集

颜色矩

聚合向量

相关图

直方图计算法

这里先用直方图进行简单讲述。

先借用一下恋花蝶的图片,

sg_trans.gif

从肉眼来看,这两张图片大概也有八成是相似的了。

在Python中利用opencv中的calcHist()方法获取其直方图数据,返回的结果是一个列表,使用matplotlib,画出了这两张图的直方图数据图

如下:

sg_trans.gif

是的,我们可以明显的发现,两张图片的直方图还是比较重合的。所以利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。

计算方法如下:

sg_trans.gif

其中gi和si是分别指两条曲线的第i个点。

最后计算得出的结果就是就是其相似程度。

不过,这种方法有一个明显的弱点,就是他是按照颜色的全局分布来看的,无法描述颜色的局部分布和色彩所处的位置。

也就是假如一张图片以蓝色为主,内容是一片蓝天,而另外一张图片也是蓝色为主,但是内容却是妹子穿了蓝色裙子,那么这个算法也很可能认为这两张图片的相似的。

缓解这个弱点有一个方法就是利用Image的crop方法把图片等分,然后再分别计算其相似度,最后综合考虑。

图像指纹与汉明距离

在介绍下面其他判别相似度的方法前,先补充一些概念。第一个就是图像指纹

图像指纹和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。

说到这里,就可以顺带引出汉明距离的概念了。

假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1

简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。

如何计算得到汉明距离,请看下面三种哈希算法

平均哈希法(aHash)

此算法是基于比较灰度图每个像素与平均值来实现的

一般步骤:

1.缩放图片,一般大小为8*8,64个像素值。

2.转化为灰度图

3.计算平均值:计算进行灰度处理后图片的所有像素点的平均值,直接用numpy中的mean()计算即可。

4.比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0.

5.得到信息指纹:组合64个bit位,顺序随意保持一致性。

最后比对两张图片的指纹,获得汉明距离即可。

感知哈希算法(pHash)

平均哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法

一般步骤:

缩小图片:32 * 32是一个较好的大小,这样方便DCT计算

转化为灰度图

计算DCT:利用Opencv中提供的dct()方法,注意输入的图像必须是32位浮点型,所以先利用numpy中的float32进行转换

缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率

计算平均值:计算缩小DCT后的所有像素点的平均值。

进一步减小DCT:大于平均值记录为1,反之记录为0.

得到信息指纹:组合64个信息位,顺序随意保持一致性。

最后比对两张图片的指纹,获得汉明距离即可。

dHash算法

相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。

步骤:

缩小图片:收缩到9*8的大小,以便它有72的像素点

转化为灰度图

计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值

获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.

最后比对两张图片的指纹,获得汉明距离即可。

整个的代码实现如下:

# -*- coding: utf-8 -*-

#feimengjuan

# 利用python实现多种方法来实现图像识别

import cv2

import numpy as np

from matplotlib import pyplot as plt

# 最简单的以灰度直方图作为相似比较的实现

def classify_gray_hist(image1,image2,size = (256,256)):

# 先计算直方图

# 几个参数必须用方括号括起来

# 这里直接用灰度图计算直方图,所以是使用第一个通道,

# 也可以进行通道分离后,得到多个通道的直方图

# bins 取为16

image1 = cv2.resize(image1,size)

image2 = cv2.resize(image2,size)

hist1 =

cv2.calcHist([image1],[0],None,[256],[0.0,255.0])

hist2 =

cv2.calcHist([image2],[0],None,[256],[0.0,255.0])

# 可以比较下直方图

plt.plot(range(256),hist1,'r')

plt.plot(range(256),hist2,'b')

plt.show()

# 计算直方图的重合度

degree = 0

for i in range(len(hist1)):

if hist1[i] != hist2[i]:

degree = degree (1 -

abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))

else:

degree = degree 1

degree = degree/len(hist1)

return degree

# 计算单通道的直方图的相似值

def calculate(image1,image2):

hist1 =

cv2.calcHist([image1],[0],None,[256],[0.0,255.0])

hist2 =

cv2.calcHist([image2],[0],None,[256],[0.0,255.0])

# 计算直方图的重合度

degree = 0

for i in range(len(hist1)):

if hist1[i] != hist2[i]:

degree = degree (1 -

abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))

else:

degree = degree 1

degree = degree/len(hist1)

return degree

# 通过得到每个通道的直方图来计算相似度

def classify_hist_with_split(image1,image2,size = (256,256)):

# 将图像resize后,分离为三个通道,再计算每个通道的相似值

image1 = cv2.resize(image1,size)

image2 = cv2.resize(image2,size)

sub_image1 = cv2.split(image1)

sub_image2 = cv2.split(image2)

sub_data = 0

for im1,im2 in zip(sub_image1,sub_image2):

sub_data = calculate(im1,im2)

sub_data = sub_data/3

return sub_data

# 平均哈希算法计算

def classify_aHash(image1,image2):

image1 = cv2.resize(image1,(8,8))

image2 = cv2.resize(image2,(8,8))

gray1 =

cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)

gray2 =

cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)

hash1 = getHash(gray1)

hash2 = getHash(gray2)

return Hamming_distance(hash1,hash2)

def classify_pHash(image1,image2):

image1 = cv2.resize(image1,(32,32))

image2 = cv2.resize(image2,(32,32))

gray1 =

cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)

gray2 =

cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)

# 将灰度图转为浮点型,再进行dct变换

dct1 = cv2.dct(np.float32(gray1))

dct2 = cv2.dct(np.float32(gray2))

# 取左上角的8*8,这些代表图片的最低频率

# 这个操作等价于c 中利用opencv实现的掩码操作

# 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分

dct1_roi = dct1[0:8,0:8]

dct2_roi = dct2[0:8,0:8]

hash1 = getHash(dct1_roi)

hash2 = getHash(dct2_roi)

return Hamming_distance(hash1,hash2)

# 输入灰度图,返回hash

def getHash(image):

avreage = np.mean(image)

hash = []

for i in range(image.shape[0]):

for j in range(image.shape[1]):

if image[i,j] >

avreage:

hash.append(1)

else:

hash.append(0)

return hash

# 计算汉明距离

def Hamming_distance(hash1,hash2):

num = 0

for index in range(len(hash1)):

if hash1[index] != hash2[index]:

num = 1

return num

if __name__ == '__main__':

img1 = cv2.imread('10.jpg')

cv2.imshow('img1',img1)

img2 = cv2.imread('11.jpg')

cv2.imshow('img2',img2)

degree = classify_gray_hist(img1,img2)

#degree =

classify_hist_with_split(img1,img2)

#degree = classify_aHash(img1,img2)

#degree = classify_pHash(img1,img2)

print degree

cv2.waitKey(0)

以上就是本文的全部内容,希望对大家学习python程序设计有所帮助。

你可能感兴趣的:(python识别图片中数字)