Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv

在虚拟机中,使用VSCode打开linux /atk-mp1/atk-mp1/my-tfa/目录下tf-a.code-workspace”;

找到“tf-a-stm32mp-2.2.r1/fdts”目录,就是设备树文件所在的目录。

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第1张图片

一、修改“stm32mp157d-atk.dts”

修改后,见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第2张图片

二、修改设备树中的电源管理

由于正点原子STM32MP157开发板没有使用“STPMIC1A”这个电源管理芯片,所以,要修改电源管理。ST公司的STM32MP157 EVK开发板将STPMIC1A芯片挂到了I2C4下,在设备树头文件中,我们要修改节点“i2c4”。

1、打开设备树头文件“stm32mp157d-atk.dtsi”,将“54~281行之间的代码”全部删除掉,就相当于删除掉“STPMIC1A”这个芯片的相关描述了

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第3张图片

2、在“stm32mp157d-atk.dtsi”文件里,面找到“vin节点”,见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第4张图片

3、删除掉“vin节点”的内容,替换为下面的代码:

//描述VDDCORE电源,也就是STM32MP157的内核电源,最小为为1.2V,最大为1.35V

   vddcore: regulator-vddcore {

        compatible = "regulator-fixed";

        regulator-name = "vddcore";

        regulator-min-microvolt = <1200000>;

        regulator-max-microvolt = <1350000>;

        regulator-off-in-suspend;

        regulator-always-on;

    };

//描述3.3V电源,最小和大都是3.3V

    v3v3: regulator-3p3v {

        compatible = "regulator-fixed";

        regulator-name = "v3v3";

        regulator-min-microvolt = <3300000>;

        regulator-max-microvolt = <3300000>;

        regulator-off-in-suspend;

        regulator-always-on;

    };

//描述vdd电源,最小和大都是3.3V

    vdd: regulator-vdd {

        compatible = "regulator-fixed";

        regulator-name = "vdd";

        regulator-min-microvolt = <3300000>;

        regulator-max-microvolt = <3300000>;

        regulator-off-in-suspend;

        regulator-always-on;

    };

//描述vdd_usb电源,最小和大都是3.3V

    vdd_usb: regulator-vdd-usb {

        compatible = "regulator-fixed";

        regulator-name = "vdd_usb";

        regulator-min-microvolt = <3300000>;

        regulator-max-microvolt = <3300000>;

        regulator-off-in-suspend;

        regulator-always-on;

    };

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第5张图片

至此,设备树中的电源管理修改完成了。

三、修改TF卡和EMMC设备树

1、打开设备树头文件“stm32mp157d-atk.dtsi”,找到“sdmmc1”节点和“sdmmc2”节点。

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第6张图片

2、修改“TF卡和EMMC设备树”后的内容为:

&sdmmc1 {

pinctrl-names = "default";

pinctrl-0 = <&sdmmc1_b4_pins_a &sdmmc1_dir_pins_a>;

st,neg-edge;

    broken-cd;

bus-width = <4>;

vmmc-supply = <&v3v3>;

status = "okay";

};

&sdmmc2 {

pinctrl-names = "default";

pinctrl-0 = <&sdmmc2_b4_pins_a &sdmmc2_d47_pins_a>;

non-removable;

st,neg-edge;

bus-width = <8>;

vmmc-supply = <&v3v3>;

    vqmmc-supply = <&v3v3>;

status = "okay";

};

修改“TF卡和EMMC设备树”后结果,见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第7张图片

四、修改USB OTG设备树

1、打开设备树头文件“stm32mp157d-atk.dtsi”,找到“usbotg_hs”节点。

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第8张图片

 2、修改“usbotg_hs”节点的内容如下:

&usbotg_hs {

phys = <&usbphyc_port1 0>;

phy-names = "usb2-phy";

usb-role-switch;

status = "okay";

};

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第9张图片

 4、添加usbphyc节点,其内容如下:

&usbphyc {

status = "okay";

};

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第10张图片

 五、修改“linux /atk-mp1/atk-mp1/my-tfa/Makefile.sdk”

1、打开终端

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd linux回车”,切换“linux”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd atk-mp1/回车”,切换“atk-mp1”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd my-tfa回车”,切换“my-tfa”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第11张图片

2、输入“vim Makefile.sdk回车”,使用vim命令打开已有的“Makefile.sdk”文件

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第12张图片 3、将“TFA_DEVICETREE ?=   stm32mp157a-dk1 stm32mp157d-dk1 stm32mp157c-dk2 stm32mp157f-dk2   stm32mp157c-ed1 stm32mp157f-ed1   stm32mp157a-ev1 stm32mp157c-ev1 stm32mp157d-ev1 stm32mp157f-ev1  stm32mp157d-atk”注释掉,只用“TFA_DEVICETREE ?= stm32mp157d-atk”,目的是:关闭多个STM32MP1开发板的TF-A镜像,只保留正点原子的开发板的TF-A镜像

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第13张图片

 4、按下ESC”键,输入“:wq,保存退出。

六、编译TF-A

1、输入“cd tf-a-stm32mp-2.2.r1/回车”,进入到“tf-a-stm32mp-2.2.r1”目录下;

输入“ls回车”,列出“tf-a-stm32mp-2.2.r1”目录下所有的文件和文件夹;

输入“make -f ../Makefile.sdk all回车”, 执行编译, '-f'的意思是重新指定Makefile。

如果需要加快编译速度,可是使用多线程编译,线程数量最好和自己给虚拟机分配的物理核心保持一致,使用-j来指定线程数,命令如下:

make -f ../Makefile.sdk -j8 all //使用8线程编译

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第14张图片

2、输入“cd ..回车”,返回上层目录“my-tfa”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd build/回车”,切换“build”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd trusted/回车”,切换“trusted”目录下

输入“ls -l回车”,列出当前目录下所有的文件和文件夹

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第15张图片

可见,还可以看到多个STM32MP1开发板的TF-A镜像,所以要删除“build”目录和“build目录下所有文件”。

3、输入“cd ..回车”,返回上层目录“build”目录下

输入“cd ..回车”,返回上层目录“my-tfa”目录下

输入“rm build -rf回车”,删除“build”目录和“build目录下所有文件

注意:通常用输入“make -f ../Makefile.sdk clean”,清除以前的编译

输入“cd tf-a-stm32mp-2.2.r1/回车”,进入到“tf-a-stm32mp-2.2.r1”目录下;

输入“ls回车”,列出“tf-a-stm32mp-2.2.r1”目录下所有的文件和文件夹;

输入“make -f ../Makefile.sdk all回车”, 执行编译, '-f'的意思是重新指定Makefile。

如果需要加快编译速度,可是使用多线程编译,线程数量最好和自己给虚拟机分配的物理核心保持一致,使用-j来指定线程数,命令如下:

make -f ../Makefile.sdk -j8 all //使用8线程编译

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第16张图片

 4、输入“cd ..回车”,返回上层目录“my-tfa”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd build/回车”,切换“build”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd trusted/回车”,切换“trusted”目录下

输入“ls -l回车”,列出当前目录下所有的文件和文件夹

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第17张图片

至此,生成了“tf-a-stm32mp157d-atk-trusted.stm32镜像文件”。

七、再次修改“linux /atk-mp1/atk-mp1/my-tfa/Makefile.sdk”

1、打开终端

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd linux回车”,切换“linux”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd atk-mp1/回车”,切换“atk-mp1”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd my-tfa回车”,切换“my-tfa”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第18张图片

 2、输入“vim Makefile.sdk回车”,使用vim命令打开已有的“Makefile.sdk”文件

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第19张图片

将“EXTRA_OEMAKE_SERIAL= STM32MP_UART_PROGRAMMER=1 STM32MP_USB_PROGRAMMER=1”注释掉

换成下面的语句:

EXTRA_OEMAKE_SERIAL=$(filter-out STM32MP_SDMMC=1 STM32MP_EMMC=1 STM32MP_SPI_NOR=1 STM32MP_RAW_NAND=1 STM32MP_SPI_NAND=1,$(EXTRA_OEMAKE)) STM32MP_UART_PROGRAMMER=1 STM32MP_USB_PROGRAMMER=1

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第20张图片

按下ESC”键,输入“:wq,保存退出。

八、再次编译TF-A

1、输入“cd tf-a-stm32mp-2.2.r1/回车”,进入到“tf-a-stm32mp-2.2.r1”目录下;

输入“ls回车”,列出“tf-a-stm32mp-2.2.r1”目录下所有的文件和文件夹;

输入“make -f ../Makefile.sdk clean”,清除以前的编译;

输入“make -f ../Makefile.sdk all回车”, 执行编译, '-f'的意思是重新指定Makefile。

如果需要加快编译速度,可是使用多线程编译,线程数量最好和自己给虚拟机分配的物理核心保持一致,使用-j来指定线程数,命令如下:

make -f ../Makefile.sdk -j8 all //使用8线程编译

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第21张图片

 2、输入“cd ..回车”,返回上层目录“my-tfa”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd build/回车”,切换“build”目录下

输入“ls回车”,列出当前目录下所有的文件和文件夹

输入“cd serialboot/回车”,切换“serialboot”目录下

输入“ls -l回车”,列出当前目录下所有的文件和文件夹

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第22张图片

至此,生成了“tf-a-stm32mp157d-atk-serialboot.stm32”。

九、创建新的“tf-a.tsv”文件

1、从以前的拷贝一份“tf-a.tsv”文件,修改为新的“tf-a.tsv”文件。

路径:C:\Program Files\STMicroelectronics\images

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第23张图片

 2、使用“Notepad++”打开“tf-a.tsv”文件

见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第24张图片

3、修改后,见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第25张图片

“PE”:不用更新程序,即“指定的分区”或“指定的设备”不需要烧写固件

十、烧录

打开虚拟机,使用“FileZilla Client”,将tf-a-stm32mp157d-atk-trusted.stm32tf-a-stm32mp157d-atk-serialboot.stm32传到“C:\Program Files\STMicroelectronics\images”目录下;

1、关闭虚拟机,防止开发板连接到虚拟机

2、将开发板上拨码开关拨到“000”位置

3、将USB导线连接电脑的USB3.0接口,另外一端连接开发板的USB OTG接口;

4、将USB导线连接电脑的USB3.0接口,另外一端连接到开发板的USB TTL接口;

5、双击“STM32CubeProgrammer”图标

6、选择图中的USB,然后点击“Connect”

7、点击“刷新”,直到出现USB1,表示连接成功。

8、点击“Open file”,找到“C:\Program Files\STMicroelectronics\images”目录下“tf-a.tsv”打开。

9、点击“Browse”,打开“C:\Program Files\STMicroelectronics\images”目录。

10、点击“选择文件夹”

11、点击“Download”

12、点击“确定”

 Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第26张图片

13、将拨码开关设置为“010”

14、按下开发板的“复位按钮”,重新启动开发板。

TF-A运行信息,见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第27张图片

uboot运行信息,见下图:

Linux第34步_TF-A移植的第2步_修改设备树和tf-a.tsv_第28张图片

 至此,TF-A全部移植完成。

你可能感兴趣的:(产品研发,linux,STM32MP157,经验分享,notepad++,烧录,TF-A)