- Mysql:分库分表
爱吃汉堡的Saul.
数据库mysql数据库
引言:随着互联网业务的飞速发展,数据量与并发请求呈现爆炸式增长。传统的单机数据库架构,即使经过垂直扩展(如提升硬件配置、优化SQL、引入读写分离),也终将面临性能瓶颈。主要挑战体现在:单表性能极限:当单表数据行数达到千万乃至亿级时,B+树索引深度增加,导致查询效率显著下降。此外,DDL(数据定义语言)操作如添加索引、修改表结构等,可能耗时数小时并长时间锁定表,严重影响业务可用性。单库资源瓶颈:单个
- 分库分表之实战-sharding-JDBC水平分库+分表后:查询与删除操作实战
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC绑定表配置实战前情摘要:1
- 分库分表之实战-sharding-JDBC绑定表配置实战
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC水平分库+水平分表配置实战
- 告别重复订单!分布式ID生成核心方案全揭秘
山海上的风
分布式java
《告别重复订单!分布式ID生成核心方案全揭秘》你可能用过UUID,却饱受索引性能折磨;你尝试过数据库自增ID,却在分库分表时束手无策;你研究过雪花算法,却被时钟回拨问题困扰……分布式订单ID生成究竟有没有完美方案?本文将为你一一拆解,并给出企业级最优解!一、为什么订单ID如此关键?(示意图:分布式订单系统)需求维度技术指标灾难案例全局唯一零冲突概率重复订单导致财务对账崩溃高性能10万+TPS秒杀活
- 分库分表之实战-sharding-JDBC水平分库+水平分表配置实战
软件编程在线接单(需要可私)
分库分表后端java数据库mysql分布式
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC广播表前情摘要:1、数据库
- 分布式ID设计方案详解:从理论到实践
一、为什么需要分布式ID?在分布式系统中,唯一ID的生成面临两大核心挑战:全局唯一性:避免跨节点、跨数据中心的ID冲突。有序性:确保ID按时间或业务规则递增,提升数据库写入性能(如InnoDB的B+树索引)。传统单机自增ID(如MySQLAUTO_INCREMENT)无法满足分库分表、高并发等场景需求,因此需引入分布式ID方案。二、主流分布式ID方案对比方案优点缺点适用场景UUID简单、无中心化依
- MySQL分布式ID冲突详解:场景、原因与解决方案
码不停蹄的玄黓
mysql分布式数据库ID冲突
引言在分布式系统开发中,你是否遇到过这样的崩溃时刻?——明明每个数据库实例的自增ID都从1开始,插入数据时却提示“Duplicateentry‘100’forkey‘PRIMARY’”;或者分库分表后,不同库里的订单ID竟然重复,业务合并时直接报错……这些问题的核心,都是分布式ID冲突。今天咱们就来扒一扒MySQL分布式ID冲突的常见场景、底层原因,以及对应的解决方案,帮你彻底避开这些坑!一、为什
- ShardingSphere-JDBC 详解
csdn_tom_168
ApacheShardingSphere数据库ShardingSphereJDBC学习
ShardingSphere-JDBC(原Sharding-JDBC)是ApacheShardingSphere的核心模块之一,定位为轻量级Java框架,在Java的JDBC层提供分库分表、读写分离、数据加密、影子库等分布式数据库增强能力。它直接操作JDBC接口,对应用透明,集成成本极低。以下是ShardingSphere-JDBC的详解:一、核心功能数据分片:分库分表:将逻辑上的大表(库)拆分成
- 【架构设计(二)】高可用、高并发的 Java 架构设计
架构学院
Java成神之路-架构师进阶java架构开发语言
【架构设计(二)】高可用、高并发的Java架构设计在互联网业务爆发式增长的今天,高可用和高并发已成为Java系统架构设计的核心目标。本文将围绕负载均衡与高可用架构、缓存设计与优化、数据库读写分离与分库分表三大关键领域,深入剖析其原理,并结合完整的代码示例,帮助开发者构建稳定高效的系统架构。无套路、关注即可领。持续更新中关注公众号:搜【架构研究站】回复:资料领取,即可获取全部面试题以及1000+份学
- ShardingProxy-分库分表
菜逼の世界
ShardingSphereShardingSphereShardingProxy分表分库
ShardingProxy获取资源包下载地址ShardingProxy当前使用版本4.1.1安装apache-shardingsphere-4.1.1-sharding-proxy-bin.tar.gz解压即可目录说明bin:启动脚本start.bat:window启动脚本start.sh:linux启动脚本stop.sh:linux停止脚本conf:配置文件server
- MySQL的主从和分库分表
snow_7
MySQL
主从分离:多读少些的场景MySQL1)主从复制使用的是binlog异步的方式MySQL的主从复制是依赖于binlog的,也就是记录MySQL上的所有变化并以二进制形式保存在磁盘上二进制日志文件。主从复制就是将binlog中的数据从主库传输到从库上,一般这个过程是异步的,即主库上的操作不会等待binlog同步的完成。主从复制的过程是这样的:首先从库在连接到主节点时会创建一个IO线程,用以请求主库更新
- 如何设计一个高并发系统?从哪些方面考虑?
真IT布道者
架构性能优化分布式
核心观点:高并发系统设计需要从架构分层、资源扩展、性能优化、容错机制四个维度综合考量,通过分布式架构和异步化等手段实现系统弹性。一、架构分层设计1.分层解耦接入层:使用Nginx/LVS实现负载均衡,采用DNS轮询或Anycast进行流量分发服务层:微服务架构(如SpringCloud或Kubernetes),服务按功能垂直拆分数据层:读写分离(MySQL主从)+分库分表(ShardingSphe
- 分布式系统ID生成方案深度解析:雪花算法 vs UUID vs 其他主流方案
可曾去过倒悬山
算法后端
分布式系统ID生成方案深度解析:雪花算法vsUUIDvs其他主流方案在分布式系统中,如何高效生成全局唯一ID是一个关键挑战。本文将深入剖析雪花算法、UUID及多种主流ID生成方案,帮助开发者根据业务场景选择最佳方案。一、为什么需要分布式ID?在分布式系统中,传统数据库自增ID存在明显瓶颈:单点故障:依赖单数据库实例扩展困难:分库分表时ID冲突安全风险:连续ID暴露业务量性能瓶颈:高并发下成为系统瓶
- 【TIDB】了解,MySQL和TiDB的取舍,差异
{⌐■_■}
tidbmysql数据库
一句话总结:MySQL好用,但扩展性差;TiDB像MySQL,但能轻松应对大数据、高并发。为什么用TiDB而不是MySQL?场景MySQLTiDB数据量很大(几百GB~TB)容易卡顿、查询慢水平扩展,性能稳定业务快速增长、分库分表难维护需要人工做分库分表自动水平扩展,无需分库分表高并发写入(比如秒杀、交易)主从延迟、写入瓶颈多副本写入,强一致性,吞吐更高高可用要求需要额外搭建主从/集群内建高可用(
- 分库分表之-ShardingJDBC技术详解
ShardingJDBC技术详解一、ShardingJDBC简介ShardingJDBC是一款轻量级的分布式数据库中间件,定位为在Java的JDBC层提供额外服务。它以客户端直连数据库的方式,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。适用于任何基于JDBC的ORM框架,如JPA、Hibernate、Mybatis、SpringJDB
- OceanBase 的探索与实践
奔向理想的星辰大海
图解技术oceanbase
一、背景vivo作为一家以设计驱动创造伟大产品,以智能终端和智慧服务为核心的科技公司,服务全球5亿+用户,用户持续增长,同时数据量也持续增长,在数据库运维过程中遇到如下问题:分库分表:随着业务数据量的不断增长,MySQL实例数据量超过了单机容量限制,业务分库分表的需求越来越多,分库分表的改造成本和风险比较高,需要能够兼容MySQL的分布式数据库解决分库分表的问题。成本压力:业务用户基数比较大,每年
- Sharding-Sphere,Sharding-JDBC_介绍_Sharding-Sphere,Sharding-JDBC分布式_分库分表工作笔记001
添柴程序猿
技术交流QQ群【JAVA,C++,Python,.NET,BigData,AI】:170933152因为公司最近在做多租户的智慧城市相关的产品,这里,偶然看到这个框架,应该是可以用到,所以就看了一些,记录下来.先看一下我们要看的内容.去网站看看shardingsphere,是一套开源的分布式数据库中间件,解决方案包括3个产品点击了解更多去看一下
- 分库分表之数据库分片分类
软件编程在线接单(需要可私)
分库分表数据库sqlmysql
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之优缺点分析前情摘要:本文章目录(一)垂直分库分表优化方案一
- 分库分表之策略
软件编程在线接单(需要可私)
分库分表数据库后端springboot
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之数据库分片分类前情摘要:1、数据库性能优化2、分库分表之优
- Sharding-JDBC分库分表之SpringBoot分片策略
JingAi_jia917
Sharding-JDBCShardingJDBC分库分表Spring分库分表分库分表策略自定义分片策略ShardingJDBC
Sharding-JDBC系列1、Sharding-JDBC分库分表的基本使用2、Sharding-JDBC分库分表之SpringBoot分片策略3、Sharding-JDBC分库分表之SpringBoot主从配置前言前一篇以一个示例分享了Sharding-JDBC的基本使用。在进行分库分表时,可以设置分库分表的分片策略,在示例中,使用的是最简单的inline分片策略。本篇详细的给大家分享一下Sh
- 分库分表下的 ID 冲突问题与雪花算法讲解
软件编程在线接单(需要可私)
分库分表面试数据库mysql分布式
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表技术栈讲解-Sharding-JDBC前情摘要:1、数据库性
- ShardingJdbc分库分表+连表查询(超简单)
宇宙超级勇猛无敌暴龙战神
springboot
下载依赖这边建议所有的依赖版本都和我同步,因为我被版本冲突折磨了好久...org.springframework.bootspring-boot-starter-parent2.2.1.RELEASEorg.springframework.bootspring-boot-starter-weborg.springframework.bootspring-boot-starterorg.spring
- MySQL分库分表完全实战指南
目录什么是分库分表️基本概念生活化理解为什么需要分库分表性能瓶颈场景1.数据量爆炸式增长2.查询性能急剧下降3.并发压力过大✅分库分表带来的收益分库分表的类型垂直拆分(按业务功能划分)垂直分库实例垂直分表实例↔️水平拆分(按数据量划分)水平分库实例水平分表实例分库分表策略详解分片键选择原则1.查询频率分析2.数据分布均匀性分片算法详解1.取模算法(适用于均匀分布数据)2.范围算法(适用于有明显范围
- 高性能数据库设计:Java开发者的实战指南
hy9523
数据库java开发语言
关键词:#数据库性能优化#索引优化#分库分表#分布式架构#Java开发实践一、引言在Java开发的日常工作中,数据库性能优化是必不可少的一部分。大部分应用系统的性能瓶颈往往出现在数据库层面。如何设计一个高效的数据库,对于提升系统响应速度、降低运营成本、提升用户体验有着至关重要的作用。本文将结合Java开发者的实际场景,从索引优化、事务锁机制、分库分表到分布式架构等多个方面,深入探讨如何在Java项
- 分库分表查询实现方案详解
ldwtxwh
深度JAVA学习java
一、分库分表查询的挑战与解决方案1.1分库分表查询的核心挑战数据路由问题:如何确定数据在哪个库哪个表跨库查询问题:需要查询多个库/表时的数据合并分页排序问题:跨库分页和排序的复杂性事务一致性:跨库事务保证聚合计算:跨库的SUM、COUNT等聚合操作1.2分库分表查询方案对比方案实现方式优点缺点适用场景客户端分片应用层实现路由逻辑简单直接,无额外依赖业务耦合度高,维护成本高简单分片场景代理中间件My
- MySql读写分离部署(一主一从,双主双从,Mycat)
PH = 7
mysql数据库
参考资料:参考视频参考博客视频参考资料及安装包:https://pan.baidu.com/s/1xT_WokN_xlRv0h06b6F3yg提取码:aag3Mysql主从复制部署指南(一主一从)NotePad++编辑Linux服务器文档Mysql高版本(8.0及以后)Linux安装Mysql分库分表(基于Mycat)的基本部署MySQL垂直分库(基于MyCat)
- 09_03_ShardingJDBC分布式数据库中间件解决方案
广+土
09微服务技术核心java中间件
1.ShardingJDBC1.1分库分表方式回顾分库分表的目的就是将我们的单库的数据控制在合理范围内,从而提高数据库的性能.垂直拆分(按照结构分)垂直分表:将一张宽表(字段很多的表),按照字段的访问频次进行拆分,就是按照表单结构进行拆垂直分库:根据不同的业务,将表进行分类,拆分到不同的数据库.这些库可以部署在不同的服务器,分摊访问压力.水平拆分(按照数据行分)水平分库:将一张表的数据(按照数据行
- 6.分布式数据库与分库分表
nu11cat
数据库架构分布式
目录一、分库分表核心概念•核心目标:突破单库性能瓶颈,应对海量数据与高并发•垂直拆分:按业务模块拆分(用户库、订单库、商品库)•水平拆分:单表数据分片(用户ID取模、时间范围分片)二、分片策略与避坑指南•分片键选择:高基数字段(用户ID)、业务关联性、数据均衡性•分片算法:哈希取模(均匀分布)、一致性哈希(扩容友好)、范围分片(冷热分离)•避坑要点:禁止无分片键查询、避免后期改分片键、分片数预留扩
- 最强MySQL笔记(超详细版)(一)
9哥学java
mysql数据库mysql数据库java
第一章数据库概述1.1数据库概述DBMS:数据库管理系统(DatabaseManagementSystem)是一种操纵和管理数据库的大型软件,例如建立、使用和维护数据库。DB:数据库(Database)SQL:结构化查询语言,(StructureQueryLanguage),专门用来操作/访问数据库的通用语言。如果把数据库比作盘子,那数据就是盘子里的菜,SQL则是你的筷子。数据库类型:数据库经过几
- java面试总结-20250610
川夜施密特
java面试开发语言
rediszset查询和插入的时间复杂度?限流的手段有哪些?什么情况会考虑分库分表,如何设计?如何预防和避免死锁发生?cpu的资源达到100%,如何排查?kafka架构设计原理?算法题数组的最大子数组和redis数据类型低层实现和应用场景?rpc框架组成部分?算法题数组旋转java8hashmap底层结构?链表和红黑树的时间复杂度?负载因子的作用?多线程为什么不直接使用runnable中的run而
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep