在PyTorch中,checkpoints 和状态字典(state_dict)都是用于保存和加载模型参数的机制,但它们有略微不同的目的。
state_dict
):state_dict()
方法,可以获取PyTorch模型的状态字典。通常用于在训练期间保存和加载模型参数,或者用于模型部署。torch.save(model.state_dict(), 'model_weights.pth')
torch.save
函数创建,可以包含各种组件,包括模型的状态字典。checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
# ... 其他信息 ...
}
torch.save(checkpoint, 'checkpoint.pth')
import torch
from torchvision import models
# Load the pretrained model
model = models.resnet50(pretrained=True)
# Load the state dict from the .pth file
state_dict = torch.load('path_to_your_file.pth')
# Load the state dict into the model
model.load_state_dict(state_dict)
# If you want to train the model further, make sure to set it to training mode
model.train()