整理了一下常用的LaTeX数学公式语法,未完待续

为了方便对应,后面会拆一下

公式代码放入LaTeX编译环境中时,两边需要加入$$:

$$公式代码$$

1,分解示例

\frac
{\partial^{5}u}
{{\partial^{2}x}{\partial^{3}t}}

\frac {\partial^{5}u} {​{\partial^{2}x}{\partial^{3}t}} 

自定义命令 partt:

\newcommand{\partt}[6]
{ \frac 
{\partial^{#2}#1} 
{{\partial{#3}^{#4}}{\partial{#5}^{#6}}} } 
{\partt {u} {7} {x} {4} {t} {3}}\\
 \\ 
{\partt {z} {9}{x} {5}{y}{4}}

\newcommand{\partt}[6] { \frac {\partial^{#2}#1} {​{\partial{#3}^{#4}}{\partial{#5}^{#6}}} } {\partt {u} {7} {x} {4} {t} {3}}\\ \\ {\partt {z} {9}{x} {5}{y}{4}}

 

\newcommand{\KUL}
{
\bf Katholieke\,\, Universiteit\,\,Leuven
}
\KUL

\newcommand{\KUL} { \bf Katholieke\,\, Universiteit\,\,Leuven } \KUL

\newcommand{\ab}{ \alpha, \beta }
\ab

\newcommand{\ab}{ \alpha, \beta } \ab

\times

a \times b

L^{A}T_{E}X\,2_{\epsilon}

L^{A}T_{E}X\,2_{\epsilon}

c^{2}=a^{2}+b^{2}

c^{2}=a^{2}+b^{2}

\tau\phi

\tau\phi

\cos2\pi=1

\cos2\pi=1

f\, =\,a^{x}\,+\,b

f\, =\,a^{x}\,+\,b

\heartsuit

\heartsuit

\cos^{2}\theta + \sin^{2}\theta = 1.0

\cos^{2}\theta + \sin^{2}\theta = 1.0

    \cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta -1

\cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta -1

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6} 

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6} 

 \forall x \in \mathbf{R},\, x^{2}\geq 0;

\forall x \in \mathbf{R},\, x^{2}\geq 0; 

 x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}

x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}

alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega

alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega 

e^{-\alpha t}

e^{-\alpha t} 

\sum_{k=1}^{N}(a_{ik}*b_{kj})^2

\sum_{k=1}^{N}(a_{ik}*b_{kj})^2

\sqrt{1+x^2}$  \qquad  $\sqrt{x^2+\sqrt{y}}

\sqrt{1+x^2}$ \qquad $\sqrt{x^2+\sqrt{y}} 

\surd{[x^2+y^2]}

\surd{[x^2+y^2]}

\underline{x+y}

\underline{x+y}

\overline{x  y}

\overline{x y} 

\overbrace{1+2+\cdots+N}

\overbrace{1+2+\cdots+N} 

\underbrace{1*2*\cdots*N}

\underbrace{1*2*\cdots*N}

\widetilde{\alpha*\beta*\gamma*\delta}

\widetilde{\alpha*\beta*\gamma*\delta}

\widehat{a*b*c*e*f}

\widehat{a*b*c*e*f}

y'=2x

y'=2x

\vec{A}

\vec{A}

\overrightarrow{ABCD}

\overrightarrow{ABCD}

x = A \cdot B \cdot C

x = A \cdot B \cdot C

\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}

\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}

\lim_{\theta \to 0}    \frac{\theta}{\sin{\theta}} = 1

\lim_{\theta \to 0} \frac{\theta}{\sin{\theta}} = 1

{3 \choose M+N}

{3 \choose M+N}

{3 \atop {M+N}}

{3 \atop {M+N}}

\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y

\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y

y(t)=\int f(t)\,dt

y(t)=\int f(t)\,dt

\int_{-\infty}^{\infty}{\sin^x(x)}  dx \ne 1

\int_{-\infty}^{\infty}{\sin^x(x)} dx \ne 1

z=\sum_{i=1}^{N}\left(  \frac{1+{x_i}^2}{1+{y_i}^2}   \right)

z=\sum_{i=1}^{N}\left( \frac{1+{x_i}^2}{1+{y_i}^2} \right)

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}

\vdots_{N}^{1}

\vdots_{N}^{1}

$$|\!|$$
$$||$$
$$|\,|$$
$$|\:|$$
$$|\;|$$
$$|\ |$$
$$|\quad|$$
$$|\qquad|$$

|\!|$$ $$||$$ $$|\,|$$ $$|\:|$$ $$|\;|$$ $$|\ |$$ $$|\quad|$$ $$|\qquad|

\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy

\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy

\int\int_{\Omega} f(x,y)\,dx\,dy

\int\int_{\Omega} f(x,y)\,dx\,dy

\iint f(x,y)\,dx dy

\iint f(x,y)\,dx dy

\iiint \mu(x,y,z)\,dx dy dz

\iiint \mu(x,y,z)\,dx dy dz

\iiiint \theta(s,t,u,v)\,ds dt du dv

\iiiint \theta(s,t,u,v)\,ds dt du dv

\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}

\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}

\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ij}

\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ij}

\int_{0}^{\infty}f(x)\,dx

\int_{0}^{\infty}f(x)\,dx

\prod_{i=0}^{N}x_{i}

\prod_{i=0}^{N}x_{i}

x \neq y

x \neq y

y = x^{2} + {(\frac{1}{1+x^{2}})}^2

y = x^{2} + {(\frac{1}{1+x^{2}})}^2

y = x^{2} + {\left(\frac{1}{1+x^{2}}\right)}^2

y = x^{2} + {\left(\frac{1}{1+x^{2}}\right)}^2

\mathbf{V} =
\left( \begin{array}{ccc}
v_{11} & v_{12} & \ldots \\
v_{21} & v_{22} & \ldots \\
\vdots & \vdots & \ddots \\
\end{array} \right)

\mathbf{V} = \left( \begin{array}{ccc} v_{11} & v_{12} & \ldots \\ v_{21} & v_{22} & \ldots \\ \vdots & \vdots & \ddots \\ \end{array} \right)

 需要注意 \begin{array}{ccc} 中c的个数,代表列数,用&来分开各列,用\\来区分各行;

\mathbf{A} =
\left( \begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn} \\
\end{array} \right)

\mathbf{A} = \left( \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \\ \end{array} \right)

y = \left\{ \begin{array}{ll}
ax_{2}+bx+c & \textrm{if $x \le c$}\\
b+e^{x} & \textrm{if $b \le x < c$}\\
l & \textrm{if $x

y = \left\{ \begin{array}{ll} ax_{2}+bx+c & \textrm{if $x \le c$}\\ b+e^{x} & \textrm{if $b \le x < c$}\\ l & \textrm{if $x<b$} \end{array} \right.

未完待续

2,综合示例

2.1 代码

\documentclass[]{article}
\title{Maths Formula}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\maketitle
\[
L^{A}T_{E}X\,2_{\epsilon}
\]
\[
L^{A}T_{E}X\,2_{\epsilon}
\]
\LaTeXe\newline
\LaTeX\\\newline
$c^{2}=a^{2}+b^{2}$
$$c^{2}=a^{2}+b^{2}$$
$\tau$\\
$\tau\phi$
$$\pi$$
\begin{equation}
\cos2\pi=1
\end{equation}
$\cos2\pi=1$
$$\cos2\pi=1$$

\begin{equation}
    f\, =\,a^{x}\,+\,b
\end{equation}
100~m$^{3}$\\
$\heartsuit$\\
a$a$a$$a$$\\

\begin{displaymath}
    \cos^{2}\theta + \sin^{2}\theta = 1.0
\end{displaymath}

\begin{equation} \label{eq:eps}
    \cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta
\end{equation}
 \\
 \\
 \\
 \\
$\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}$
$$\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}$$

\begin{equation}
    \lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{equation}
\begin{displaymath}
    \lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{displaymath}


\begin{equation}
    \forall x \in \mathbf{R},\, x^{2}\geq 0;
\end{equation}

\begin{displaymath}
    x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}
\end{displaymath}

$$a^x + y \neq a^{x+y}$$

$$\alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega$$\\\\
$x_{3}$    $e^{-\alpha t}$\\
$x_{3}$\qquad $e^{-\alpha t}$

$$\sum_{k=1}^{N}(a_{ik}*b_{kj})^2$$\\

$\sqrt{1+x^2}$  \qquad  $\sqrt{x^2+\sqrt{y}}$\\
$$\sqrt[3]{1+x^2}$$

$$\surd{[x^2+y^2]}$$\\
$$\underline{x+y}$$
$$\overline{x \and y}$$

$$\overbrace{1+2+\cdots+N}$$
$$\underbrace{1*2*\cdots*N}$$

$$\widetilde{\alpha*\beta*\gamma*\delta}$$
$$\widehat{a*b*c*e*f}$$

$$y=x^{2}$$ $$y'=2x$$ $$y''=2$$
$y=x^{2}$\qquad$y'=2x$\qquad$y''=2$

$$\vec{A}$$
$$\overrightarrow{ABCD}$$
\begin{displaymath}
    x = A \cdot B \cdot C
\end{displaymath}

$$\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}$$

\[
\lim_{\theta \to 0}    \frac{\theta}{\sin{\theta}} = 1
\]


$${3 \choose M+N}$$
$${3 \atop {M+N}}$$

$$\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y$$

$$y(t)=\int f(t)\,dt$$
$$\int_{-\infty}^{\infty}{\sin^x(x)}  dx \ne 1$$

$$z=\sum_{i=1}^{N}\left(  \frac{1+{x_i}^2}{1+{y_i}^2}   \right)$$

$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}+$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}+$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ddots \frac{1}{N}+$$
$$\vdots_{N}^{1}$$

$$|\!|$$
$$||$$
$$|\,|$$
$$|\:|$$
$$|\;|$$
$$|\ |$$
$$|\quad|$$
$$|\qquad|$$

\newcommand{\ud}{\matchrm{d}}
\begin{displaymath}
\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy
\end{displaymath}
$$\int\int_{\Omega} f(x,y)\,dx\,dy$$


$$\iint f(x,y)\,dx dy$$
$$\iiint \mu(x,y,z)\,dx dy dz$$
$$\iiiint \theta(s,t,u,v)\,ds dt du dv$$
$$\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}$$


$$\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ij}$$
$$\int_{0}^{\infty}f(x)\,dx$$
$$\prod_{i=0}^{N}x_{i}$$
$$x \neq y$$

$$y = x^{2} + {(\frac{1}{1+x^{2}})}^2$$
$$y = x^{2} + {\left(\frac{1}{1+x^{2}}\right)}^2$$

\begin{displaymath}
\mathbf{V} =
\left( \begin{array}{ccc}
v_{11} & v_{12} & \ldots \\
v_{21} & v_{22} & \ldots \\
\vdots & \vdots & \ddots \\
\end{array} \right)
\end{displaymath}

\begin{displaymath}
\mathbf{A} =
\left( \begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn} \\
\end{array} \right)
\end{displaymath}


\begin{displaymath}
y = \left\{ \begin{array}{ll}
ax_{2}+bx+c & \textrm{if $x \le c$}\\
b+e^{x} & \textrm{if $b \le x < c$}\\
l & \textrm{if $x

2.2 效果

整理了一下常用的LaTeX数学公式语法,未完待续_第1张图片

整理了一下常用的LaTeX数学公式语法,未完待续_第2张图片

整理了一下常用的LaTeX数学公式语法,未完待续_第3张图片

 整理了一下常用的LaTeX数学公式语法,未完待续_第4张图片

整理了一下常用的LaTeX数学公式语法,未完待续_第5张图片

查看系统命令的方法

整理了一下常用的LaTeX数学公式语法,未完待续_第6张图片

 

你可能感兴趣的:(线性代数,算法,HPC)