【Linux】从C语言文件操作 到Linux文件IO 文件系统调用

文章目录

  • 前言
  • 一、C语言文件I/O复习
    • 文件操作:打开和关闭
    • 文件操作:顺序读写
    • 文件操作:随机读写
    • stdin、stdout、stderr
  • 二、承上启下
  • 三、Linux系统的文件I/O
    • 系统调用接口介绍
      • open()
      • close()
      • read()
      • write()
      • lseek()

[!abstract] Linux文件相关重点

  • 复习C文件IO相关操作
  • 认识文件相关系统调用接口
  • 认识文件描述符,理解重定向
  • 对比fd和FILE,理解系统调用和库函数的关系
  • 理解文件系统中inode的概念
  • 认识软硬链接,对比区别
  • 认识动态静态库,学会结合gcc选项,制作动静态库

前言

  1. 文件 = 内容 + 属性

  2. 所以对文件的所有操作被分为:
    a. 对内容操作
    b. 对属性操作

  3. 我们要访问一个文件的时候,都是要先把这个文件打开的:
    打开前:是普通的磁盘文件
    打开后:文件被加载到内存中
    打开的步骤是由操作系统来做的!

  4. 一个进程可以打开很多文件,所以操作系统运行时被打开的文件是很多的,操作系统当然要对这些被打开的文件做管理,管理的方式是:先描述,再组织。因此,一个文件要被打开,一定要先在内核中,形成被打开的文件对象。【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第1张图片

  5. 本文研究的文件操作的本质是:进程内存中被打开(被加载)的文件 的关系


一、C语言文件I/O复习

文件操作:打开和关闭

函数签名 描述
FILE fopen(const char path, const char* mode) 打开文件并返回指向文件的指针
int fclose(FILE *stream) 关闭文件
模式 描述
“r” 读取:打开文件进行输入操作。文件必须存在。
“w” 写入:创建一个空文件进行输出操作。如果同名文件已存在,其内容将被丢弃,文件被视为新的空文件。
“a” 追加:打开文件进行输出操作,将数据追加到文件末尾。输出操作总是在文件末尾写入数据,扩展文件大小。重新定位操作(fseek、fsetpos、rewind)将被忽略。如果文件不存在,则创建文件。
“r+” 读取/更新:打开文件进行更新操作(既可读又可写)。文件必须存在。
“w+” 写入/更新:创建一个空文件并打开它进行更新操作(既可读又可写)。如果同名文件已存在,其内容将被丢弃,文件被视为新的空文件。
“a+” 追加/更新:打开文件进行更新操作(既可读又可写),所有输出操作都在文件末尾写入数据。重新定位操作(fseek、fsetpos、rewind)影响下一次的输入操作,但输出操作将位置移回文件末尾。如果文件不存在,则创建文件。

[!Attention] 不带+号的模式在文件打开时会对原文件进行擦除(覆盖)操作,具体来说:

  • "w"模式: 如果使用 “w” 模式打开一个文件,它会创建一个空文件,如果同名文件已存在,则会清空该文件的内容。换句话说,打开文件时,如果文件已经存在,原文件的内容将被抹掉。
  • "a"模式: 如果使用 “a” 模式打开一个文件,文件指针会移动到文件末尾,写入的数据将追加到文件的末尾。如果文件不存在,则会创建一个新文件。原文件的内容不会被清空,而是保留在文件中。

这是在不带+号的写入模式下的行为。要同时进行读写而不清空文件内容,可以考虑使用带+号的模式,如 “r+” 或 “a+”。

实验一下:

#include 

int main() 
{
    FILE *filePointer;
	
    // 打开文件
    filePointer = fopen("test.txt", "w");
    if (filePointer == NULL) {
        printf("文件打开失败。\n");
        return 1;
    }
	
    printf("文件打开成功,执行其他文件操作...\n");
	
    // 执行其他文件操作...
	
    // 关闭文件
    if (fclose(filePointer) == 0) {
        printf("文件关闭成功。\n");
    } else {
        printf("文件关闭失败。\n");
    }
	
    return 0;
}

【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第2张图片

文件操作:顺序读写

函数签名 描述
int fputc(int c, FILE *stream) 将一个字符写入文件
int fgetc(FILE *stream) 从文件中读取一个字符
char *fgets(char *s, int size, FILE *stream) 从文件中读取一行内容,并存储到字符串 s 中
int fputs(const char *s, FILE *stream) 将字符串 s 写入文件
size_t fread(void *ptr, size_t size, size_t count, FILE *stream) 从文件中读取二进制数据
size_t fwrite(void *ptr, size_t size, size_t count, FILE *stream) 向文件中写入二进制数据
#include 

int main() {
    FILE *filePointer;
    char ch;

    // 写入文件
    filePointer = fopen("test.txt", "w");
    if (filePointer == NULL) {
        printf("文件打开失败。\n");
        return 1;
    }

    fputc('A', filePointer);

    fclose(filePointer);

    // 读取文件
    filePointer = fopen("test.txt", "r");
    if (filePointer == NULL) {
        printf("文件打开失败。\n");
        return 1;
    }

    ch = fgetc(filePointer);
    printf("读取的字符:%c\n", ch);

    fclose(filePointer);

    return 0;
}

【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第3张图片

文件操作:随机读写

函数签名 描述
int fseek(FILE *stream, long offset, int whence) 设置文件指针偏移量,用于定位读写位置
long ftell(FILE *stream) 返回当前文件指针的位置
void rewind(FILE *stream) 将文件指针重置到文件开头
int feof(FILE *stream) 检测是否到达文件末尾
#include 

int main() {
    FILE *filePointer;

    // 写入文件
    filePointer = fopen("test.txt", "w");
    if (filePointer == NULL) {
        printf("文件打开失败。\n");
        return 1;
    }

    fputs("Hello, World!", filePointer);

    fclose(filePointer);

    // 随机读取文件
    filePointer = fopen("test.txt", "r");
    if (filePointer == NULL) {
        printf("文件打开失败。\n");
        return 1;
    }

    fseek(filePointer, 7, SEEK_SET); // 移动到文件第8个字符的位置

    char ch = fgetc(filePointer);
    printf("随机读取的字符:%c\n", ch);

    fclose(filePointer);

    return 0;
}

请添加图片描述

stdin、stdout、stderr

  • C默认打开的三个输入输出流是:stdinstdoutstderr
  • 仔细观察发现,这三个流的类型都是FILE*, fopen返回值类型,文件指针
  • 这三个流通常在程序开始运行时就已经打开,并且不需要使用fopen等函数手动打开。它们分别用于标准输入、标准输出和标准错误输出。
  1. stdin(标准输入流):

    • stdin代表标准输入流,通常与键盘输入相关联。
    • 对应的文件指针是FILE* stdin
    • 你可以使用scanf等函数从stdin中读取输入数据。
  2. stdout(标准输出流):

    • stdout代表标准输出流,通常与屏幕输出相关联。
    • 对应的文件指针是FILE* stdout
    • 你可以使用printf等函数将输出写入到stdout中。
  3. stderr(标准错误输出流):

    • stderr代表标准错误输出流,通常也与屏幕输出相关联。
    • 对应的文件指针是FILE* stderr
    • stdout相比,stderr通常用于输出错误消息,以便在程序发生错误时将错误信息与正常输出区分开。

这些标准流的使用使得C程序能够在不同环境中运行,而不用关心具体的输入和输出设备。在程序中,你可以直接使用这些流,而无需显式打开或关闭它们。例如,可以通过fprintf将输出写入到文件,而不仅仅是屏幕,或者通过fscanf从文件而不是键盘读取输入。


二、承上启下

  • 上面的fopen fclose fread fwrite 都是C标准库当中的函数,我们称之为库函数(libc)。
  • 而, open close read write lseek 都属于系统提供的接口,称之为系统调用接口
  • 回忆一下我们讲【Linux】从冯诺依曼体系结构到操作系统 时,画的一张图!【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第4张图片

系统调用接口和库函数的关系,就是库函数封装了系统调用接口。
所以可以认为,f#系列的函数,都是对系统调用的封装,方便二次开发。
如何封装?
fopen函数在上层为用户申请FILE结构体变量,并返回该结构体的地址(FILE*),在底层通过系统接口open打开对应的文件,得到文件描述符fd,并把fd填充到FILE结构体当中的_fileno变量中,至此便完成了文件的打开操作。


三、Linux系统的文件I/O

系统调用接口介绍

先介绍一个小技巧

关于Linux常用的传参方式:函数传入标志位的小技巧


C语言常通过一个整形来传递选项,但是当选项较多时,每一个选项都用一个整形太浪费空间,所以有人想出了办法 – 使用一个比特位来传递一个选项,这样一个整形就可以传递32种选项,大大节省了空间,具体案例如下:

#include 

#define Print1 1      // 0001
#define Print2 (1<<1) // 0010
#define Print3 (1<<2) // 0100
#define Print4 (1<<3) // 1000

void Print(int flags)
{
   if(flags&Print1) printf("hello 1\n");
   if(flags&Print2) printf("hello 2\n");
   if(flags&Print3) printf("hello 3\n");
   if(flags&Print4) printf("hello 4\n");
}


int main()
{
   Print(Print1);
   Print(Print1|Print2);
   Print(Print1|Print2|Print3);
   Print(Print3|Print4);
   Print(Print4);
   return 0;
}

【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第5张图片

如上,我们将宏与比特位对应,然后在 Print 函数中编写每一个宏对应的功能,之后我们就可以在其他函数中通过调用 Func 函数并传递对应的选项来达到我们想要的效果,并且我们可以通过按位或来实现同时传递几个选项。

open()

  • 系统调用open:用于打开或创建一个文件。open函数是一个系统调用,用于打开文件或创建新文件,返回值是一个文件描述符,后续的文件操作可以使用这个文件描述符。【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第6张图片

  • pathname: 要打开或创建的目标文件

  • flags: 打开文件时,可以传入多个参数选项,用下面的一个或者多个常量进行“按位或”运算,构成flags。

  • 常用的flags的可选参数:

    文件打开方式 含义 如果指定文件不存在
    O_RDONLY 以只读形式打开 出错
    O_WRONLY 以只写形式打开 出错
    O_RDWR 以读写形式打开 出错
    O_APPEND 向文本文件尾添加数据 出错
    O_CREAT 如果文件不存在,创建新文件 建立一个新的文件
    O_TRUNC 打开文件时清空文件中之前的数据 出错

close()

  • 系统调用close:关闭一个文件【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第7张图片

read()

  • read:从文件中读数据 【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第8张图片

  • 返回值
    如果成功,则返回读取的字节数(0表示文件结束),并将文件位置提前该字节数。如果这个数字小于请求的字节数,则不会报错;例如,发生这种情况可能是因为现在实际可用的字节数减少了(可能是因为接近文件末尾,或者因为我们正在从管道或终端读取数据),或者因为read()被信号中断。发生错误时,返回-1,并适当地设置errno。在这种情况下,文件位置(如果有的话)是否改变是未指定的。

下面用read.c来测试read()系统调用:

#include 
#include 
#include 
#include 
#include 

#define FILE_NAME "file1.txt"

int main() {
    int fd = open(FILE_NAME, O_RDONLY);
    if(fd == -1) {
        perror("open");
        return 1;
    }

    char buf[1024];
    //C语言字符串以'\0'结尾,所以留一个位置来放置
    int ret = read(fd, buf, sizeof(buf) - 1);
    //read读到文件末尾返回0
    while(ret != 0) {
        buf[ret] = '\0';
        printf("%s", buf);
        ret = read(fd, buf, sizeof(buf) - 1);
    }

    close(fd);
}

现象:
【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第9张图片

write()

  • write:向文件中写数据【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第10张图片

下面用write.c来测试write()系统调用:

#include 
#include 
#include 
#include 
#include 
#include 

#define FILE_NAME1 "file1.txt"  //已存在
#define FILE_NAME2 "file2.txt"  //不存在

int main() {
    //以只写形式打开,并清空文件中之前的数据
    int fd1 = open(FILE_NAME1, O_WRONLY | O_TRUNC); 

    //创建文件并以只写形式打开,并指定文件的默认权限为0666(还受umask的影响)
    //同时,我们可以通过umask接口手动设置当前进程的文件掩码,而不使用从父进程继承过来的umask
    umask(0000); 
    int fd2 = open(FILE_NAME2, O_WRONLY | O_CREAT | O_TRUNC, 0666);
	
	//错误处理
    if(fd1 == -1 || fd2 == -1) {
        perror("open");
        return 1;
    }

    const char* buf1 = "hello file1\n";
    const char* buf2 = "hello file2\n";

    int cnt = 5;
    while(cnt--) {
        //注意:这里strlen求得的长度不用加1,因为字符串以'\0'结尾只是C语言的特性,而文件中并不这样规定
        write(fd1, buf1, strlen(buf1));
        write(fd2, buf2, strlen(buf2));
    }

    close(fd1);
    close(fd2);
}

现象:
【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第11张图片

[!Attention] 上面的文件操作的三个细节:

  1. 如果在向文件中写入数据时没有指定O_TRUNC选项,而是直接写入数据,新数据会从文件的当前位置开始写入,而不会影响文件中原有的数据。如果新数据的长度小于文件当前的大小,那么文件的尾部会保留原有的数据,就比如先写入五行 hello world,再写入五行 hello:【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第12张图片

  2. 创建 file2.txt 时我们通过 umask 系统调用将 umask 由默认的 0002 设置为了 0000(第一个0代表八进制),然后将 open() 系统调用的最后一个参数 mode 设置为 0666,所以 file2 的最终权限为 文件的默认权限 & ~umask0666 & ~0000 亦即 0666:【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第13张图片

  3. 在C语言中,字符串是以'\0'(空字符或Null字符)结尾的字符数组。但是,在文件中存储字符串时,并不要求在文件中以'\0'结尾。文件系统仅是按照写入的字节数来存储数据,而不关心字符串的结尾字符。因此,当你使用write函数将字符串写入文件时,不需要把字符串结尾的'\0'字符写入文件,只需写入字符串本身即可。
    如果在写入文件时将'\0'字符写入:
    请添加图片描述

  • 可能会导致一些乱码的问题:
    【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第14张图片

  • 所以说write函数的第三个参数 count 应该设置为 strlen(str),表示写入字符串的长度,而不包括字符串结尾的'\0'字符。


lseek()

lseek(“lseek"代表"long seek”)是Linux系统调用之一,用于在文件中移动文件指针的位置。它是对文件进行随机访问的关键系统调用之一。lseek可以用于设置文件偏移量,以便在文件中执行读取或写入操作。

函数原型如下:

【Linux】从C语言文件操作 到Linux文件IO 文件系统调用_第15张图片

  • fd 是文件描述符,表示要操作的文件。
  • offset 是文件偏移量,可以为正数、负数或零,用于指定相对于whence参数的偏移位置。
  • whence 指定了偏移量的基准位置,可以是以下值之一:
    • SEEK_SET:相对于文件的起始位置进行偏移。
    • SEEK_CUR:相对于当前文件指针的位置进行偏移。
    • SEEK_END:相对于文件的末尾位置进行偏移。

lseek函数的返回值是新的文件偏移量,如果调用出现错误,则返回 -1

使用示例:

#include 
#include 
#include 

int main() {
    int fd = open("example.txt", O_RDWR);
    if (fd == -1) {
        perror("open");
        return 1;
    }

    // 使用 lseek 将文件指针移动到文件末尾
    off_t end_position = lseek(fd, 0, SEEK_END);
    if (end_position == -1) {
        perror("lseek");
        close(fd);
        return 1;
    }

    printf("当前文件大小:%lld 字节\n", (long long)end_position);

    // 使用 lseek 将文件指针移动到文件开头
    off_t start_position = lseek(fd, 0, SEEK_SET);
    if (start_position == -1) {
        perror("lseek");
        close(fd);
        return 1;
    }

    printf("文件指针已重置到文件开头\n");

    close(fd);
    return 0;
}

在上述示例中,lseek函数用于将文件指针移动到文件的末尾,获取文件的大小,然后将文件指针重新设置到文件开头。这演示了lseek在文件中移动文件指针的基本用法。

你可能感兴趣的:(Linux系统编程,linux,c语言,服务器,c++,bash,开源软件)