Java实现任意两段文字对比并输出对比结果到excel文件

一、需求描述

        在企业审计业务和公文业务中,需要实现对文档内容的对比,对比的结果供工作人员进行核查。主要实现以下功能:
        1.对比的结果以富文本的样式导出到excel中
        2.保留对比结果的新增、修改和删除效果

实现的最终效果图如下:

Java实现任意两段文字对比并输出对比结果到excel文件_第1张图片

二、具体实现步骤

        需求看似简单,但实现起来有以下几大难点:

  • 文字内容比较的算法,如何快速找出并定位一段文本中的内容?
  • 在比对出结果后需要采用富文本的样式进行展示,如何实现?

2.1 引入EasyExcel

       主要实现Excel文件的处理,包含对比内容的生成等。


    com.alibaba
    easyexcel
    3.0.5

2.2  引入开源DiffMatchPatch

        主要实现文本的比对,代码不算太多,重点需要知道如何使用即可。具体代码如下:

package com.demo.common.utils;
/*
 * Diff Match and Patch
 *
 * Copyright 2006 Google Inc.
 * http://code.google.com/p/google-diff-match-patch/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.UnsupportedEncodingException;
import java.net.URLDecoder;
import java.net.URLEncoder;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/*
 * Functions for diff, match and patch.
 * Computes the difference between two texts to create a patch.
 * Applies the patch onto another text, allowing for errors.
 *
 * @author [email protected] (Neil Fraser)
 */

/**
 * Class containing the diff, match and patch methods.
 * Also contains the behaviour settings.
 */
@SuppressWarnings("all")
public class DiffMatchPatch {

    // Defaults.
    // Set these on your diff_match_patch instance to override the defaults.

    /**
     * Number of seconds to map a diff before giving up (0 for infinity).
     */
    public float Diff_Timeout = 1.0f;
    /**
     * Cost of an empty edit operation in terms of edit characters.
     */
    public short Diff_EditCost = 4;
    /**
     * The size beyond which the double-ended diff activates.
     * Double-ending is twice as fast, but less accurate.
     */
    public short Diff_DualThreshold = 32;
    /**
     * At what point is no match declared (0.0 = perfection, 1.0 = very loose).
     */
    public float Match_Threshold = 0.5f;
    /**
     * How far to search for a match (0 = exact location, 1000+ = broad match).
     * A match this many characters away from the expected location will add
     * 1.0 to the score (0.0 is a perfect match).
     */
    public int Match_Distance = 1000;
    /**
     * When deleting a large block of text (over ~64 characters), how close does
     * the contents have to match the expected contents. (0.0 = perfection,
     * 1.0 = very loose).  Note that Match_Threshold controls how closely the
     * end points of a delete need to match.
     */
    public float Patch_DeleteThreshold = 0.5f;
    /**
     * Chunk size for context length.
     */
    public short Patch_Margin = 4;
    /**
     * The number of bits in an int.
     */
    private int Match_MaxBits = 32;

    /**
     * Internal class for returning results from diff_linesToChars().
     * Other less paranoid languages just use a three-element array.
     */
    protected static class LinesToCharsResult {
        protected String chars1;
        protected String chars2;
        protected List lineArray;

        protected LinesToCharsResult(String chars1, String chars2,
                                     List lineArray) {
            this.chars1 = chars1;
            this.chars2 = chars2;
            this.lineArray = lineArray;
        }
    }
    //  DIFF FUNCTIONS
    /**
     * The data structure representing a diff is a Linked list of Diff objects:
     * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"),
     *  Diff(Operation.EQUAL, " world.")}
     * which means: delete "Hello", add "Goodbye" and keep " world."
     */
    public enum Operation {
        DELETE, INSERT, EQUAL
    }
    /**
     * Find the differences between two texts.
     * Run a faster slightly less optimal diff
     * This method allows the 'checklines' of diff_main() to be optional.
     * Most of the time checklines is wanted, so default to true.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @return Linked List of Diff objects.
     */
    public LinkedList diff_main(String text1, String text2) {
        return diff_main(text1, text2, true);
    }
    /**
     * Find the differences between two texts.  Simplifies the problem by
     * stripping any common prefix or suffix off the texts before diffing.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param checklines Speedup flag.  If false, then don't run a
     *     line-level diff first to identify the changed areas.
     *     If true, then run a faster slightly less optimal diff
     * @return Linked List of Diff objects.
     */
    public LinkedList diff_main(String text1, String text2, boolean checklines) {
        // Check for equality (speedup)
        LinkedList diffs;
        if (text1.equals(text2)) {
            diffs = new LinkedList();
            diffs.add(new Diff(Operation.EQUAL, text1));
            return diffs;
        }
        // Trim off common prefix (speedup)
        int commonlength = diff_commonPrefix(text1, text2);
        String commonprefix = text1.substring(0, commonlength);
        text1 = text1.substring(commonlength);
        text2 = text2.substring(commonlength);
        // Trim off common suffix (speedup)
        commonlength = diff_commonSuffix(text1, text2);
        String commonsuffix = text1.substring(text1.length() - commonlength);
        text1 = text1.substring(0, text1.length() - commonlength);
        text2 = text2.substring(0, text2.length() - commonlength);
        // Compute the diff on the middle block
        diffs = diff_compute(text1, text2, checklines);

        // Restore the prefix and suffix
        if (commonprefix.length() != 0) {
            diffs.addFirst(new Diff(Operation.EQUAL, commonprefix));
        }
        if (commonsuffix.length() != 0) {
            diffs.addLast(new Diff(Operation.EQUAL, commonsuffix));
        }
        diff_cleanupMerge(diffs);
        return diffs;
    }
    /**
     * Find the differences between two texts.  Assumes that the texts do not
     * have any common prefix or suffix.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param checklines Speedup flag.  If false, then don't run a
     *     line-level diff first to identify the changed areas.
     *     If true, then run a faster slightly less optimal diff
     * @return Linked List of Diff objects.
     */
    protected LinkedList diff_compute(String text1, String text2,boolean checklines) {
        LinkedList diffs = new LinkedList();
        if (text1.length() == 0) {
            // Just add some text (speedup)
            diffs.add(new Diff(Operation.INSERT, text2));
            return diffs;
        }
        if (text2.length() == 0) {
            // Just delete some text (speedup)
            diffs.add(new Diff(Operation.DELETE, text1));
            return diffs;
        }
        String longtext = text1.length() > text2.length() ? text1 : text2;
        String shorttext = text1.length() > text2.length() ? text2 : text1;
        int i = longtext.indexOf(shorttext);
        if (i != -1) {
            // Shorter text is inside the longer text (speedup)
            Operation op = (text1.length() > text2.length()) ?
                    Operation.DELETE : Operation.INSERT;
            diffs.add(new Diff(op, longtext.substring(0, i)));
            diffs.add(new Diff(Operation.EQUAL, shorttext));
            diffs.add(new Diff(op, longtext.substring(i + shorttext.length())));
            return diffs;
        }
        longtext = shorttext = null;  // Garbage collect.
        // Check to see if the problem can be split in two.
        String[] hm = diff_halfMatch(text1, text2);
        if (hm != null) {
            // A half-match was found, sort out the return data.
            String text1_a = hm[0];
            String text1_b = hm[1];
            String text2_a = hm[2];
            String text2_b = hm[3];
            String mid_common = hm[4];
            // Send both pairs off for separate processing.
            LinkedList diffs_a = diff_main(text1_a, text2_a, checklines);
            LinkedList diffs_b = diff_main(text1_b, text2_b, checklines);
            // Merge the results.
            diffs = diffs_a;
            diffs.add(new Diff(Operation.EQUAL, mid_common));
            diffs.addAll(diffs_b);
            return diffs;
        }
        // Perform a real diff.
        if (checklines && (text1.length() < 100 || text2.length() < 100)) {
            checklines = false;  // Too trivial for the overhead.
        }
        List linearray = null;
        if (checklines) {
            // Scan the text on a line-by-line basis first.
            LinesToCharsResult b = diff_linesToChars(text1, text2);
            text1 = b.chars1;
            text2 = b.chars2;
            linearray = b.lineArray;
        }
        diffs = diff_map(text1, text2);
        if (diffs == null) {
            // No acceptable result.
            diffs = new LinkedList();
            diffs.add(new Diff(Operation.DELETE, text1));
            diffs.add(new Diff(Operation.INSERT, text2));
        }
        if (checklines) {
            // Convert the diff back to original text.
            diff_charsToLines(diffs, linearray);
            // Eliminate freak matches (e.g. blank lines)
            diff_cleanupSemantic(diffs);
            // Rediff any replacement blocks, this time character-by-character.
            // Add a dummy entry at the end.
            diffs.add(new Diff(Operation.EQUAL, ""));
            int count_delete = 0;
            int count_insert = 0;
            String text_delete = "";
            String text_insert = "";
            ListIterator pointer = diffs.listIterator();
            Diff thisDiff = pointer.next();
            while (thisDiff != null) {
                switch (thisDiff.operation) {
                    case INSERT:
                        count_insert++;
                        text_insert += thisDiff.text;
                        break;
                    case DELETE:
                        count_delete++;
                        text_delete += thisDiff.text;
                        break;
                    case EQUAL:
                        // Upon reaching an equality, check for prior redundancies.
                        if (count_delete >= 1 && count_insert >= 1) {
                            // Delete the offending records and add the merged ones.
                            pointer.previous();
                            for (int j = 0; j < count_delete + count_insert; j++) {
                                pointer.previous();
                                pointer.remove();
                            }
                            for (Diff newDiff : diff_main(text_delete, text_insert, false)) {
                                pointer.add(newDiff);
                            }
                        }
                        count_insert = 0;
                        count_delete = 0;
                        text_delete = "";
                        text_insert = "";
                        break;
                }
                thisDiff = pointer.hasNext() ? pointer.next() : null;
            }
            diffs.removeLast();  // Remove the dummy entry at the end.
        }
        return diffs;
    }
    /**
     * Split two texts into a list of strings.  Reduce the texts to a string of
     * hashes where each Unicode character represents one line.
     * @param text1 First string.
     * @param text2 Second string.
     * @return An object containing the encoded text1, the encoded text2 and
     *     the List of unique strings.  The zeroth element of the List of
     *     unique strings is intentionally blank.
     */
    protected LinesToCharsResult diff_linesToChars(String text1, String text2) {
        List lineArray = new ArrayList();
        Map lineHash = new HashMap();
        // e.g. linearray[4] == "Hello\n"
        // e.g. linehash.get("Hello\n") == 4
        // "\x00" is a valid character, but various debuggers don't like it.
        // So we'll insert a junk entry to avoid generating a null character.
        lineArray.add("");
        String chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash);
        String chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash);
        return new LinesToCharsResult(chars1, chars2, lineArray);
    }
    /**
     * Split a text into a list of strings.  Reduce the texts to a string of
     * hashes where each Unicode character represents one line.
     * @param text String to encode.
     * @param lineArray List of unique strings.
     * @param lineHash Map of strings to indices.
     * @return Encoded string.
     */
    private String diff_linesToCharsMunge(String text, List lineArray,
                                          Map lineHash) {
        int lineStart = 0;
        int lineEnd = -1;
        String line;
        StringBuilder chars = new StringBuilder();
        // Walk the text, pulling out a substring for each line.
        // text.split('\n') would would temporarily double our memory footprint.
        // Modifying text would create many large strings to garbage collect.
        while (lineEnd < text.length() - 1) {
            lineEnd = text.indexOf('\n', lineStart);
            if (lineEnd == -1) {
                lineEnd = text.length() - 1;
            }
            line = text.substring(lineStart, lineEnd + 1);
            lineStart = lineEnd + 1;

            if (lineHash.containsKey(line)) {
                chars.append(String.valueOf((char) (int) lineHash.get(line)));
            } else {
                lineArray.add(line);
                lineHash.put(line, lineArray.size() - 1);
                chars.append(String.valueOf((char) (lineArray.size() - 1)));
            }
        }
        return chars.toString();
    }
    /**
     * Rehydrate the text in a diff from a string of line hashes to real lines of
     * text.
     * @param diffs LinkedList of Diff objects.
     * @param lineArray List of unique strings.
     */
    protected void diff_charsToLines(LinkedList diffs,
                                     List lineArray) {
        StringBuilder text;
        for (Diff diff : diffs) {
            text = new StringBuilder();
            for (int y = 0; y < diff.text.length(); y++) {
                text.append(lineArray.get(diff.text.charAt(y)));
            }
            diff.text = text.toString();
        }
    }
    /**
     * Explore the intersection points between the two texts.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @return LinkedList of Diff objects or null if no diff available.
     */
    protected LinkedList diff_map(String text1, String text2) {
        long ms_end = System.currentTimeMillis() + (long) (Diff_Timeout * 1000);
        // Cache the text lengths to prevent multiple calls.
        int text1_length = text1.length();
        int text2_length = text2.length();
        int max_d = text1_length + text2_length - 1;
        boolean doubleEnd = Diff_DualThreshold * 2 < max_d;
        List> v_map1 = new ArrayList>();
        List> v_map2 = new ArrayList>();
        Map v1 = new HashMap();
        Map v2 = new HashMap();
        v1.put(1, 0);
        v2.put(1, 0);
        int x, y;
        Long footstep = 0L;  // Used to track overlapping paths.
        Map footsteps = new HashMap();
        boolean done = false;
        // If the total number of characters is odd, then the front path will
        // collide with the reverse path.
        boolean front = ((text1_length + text2_length) % 2 == 1);
        for (int d = 0; d < max_d; d++) {
            // Bail out if timeout reached.
            if (Diff_Timeout > 0 && System.currentTimeMillis() > ms_end) {
                return null;
            }

            // Walk the front path one step.
            v_map1.add(new HashSet());  // Adds at index 'd'.
            for (int k = -d; k <= d; k += 2) {
                if (k == -d || k != d && v1.get(k - 1) < v1.get(k + 1)) {
                    x = v1.get(k + 1);
                } else {
                    x = v1.get(k - 1) + 1;
                }
                y = x - k;
                if (doubleEnd) {
                    footstep = diff_footprint(x, y);
                    if (front && (footsteps.containsKey(footstep))) {
                        done = true;
                    }
                    if (!front) {
                        footsteps.put(footstep, d);
                    }
                }
                while (!done && x < text1_length && y < text2_length
                        && text1.charAt(x) == text2.charAt(y)) {
                    x++;
                    y++;
                    if (doubleEnd) {
                        footstep = diff_footprint(x, y);
                        if (front && (footsteps.containsKey(footstep))) {
                            done = true;
                        }
                        if (!front) {
                            footsteps.put(footstep, d);
                        }
                    }
                }
                v1.put(k, x);
                v_map1.get(d).add(diff_footprint(x, y));
                if (x == text1_length && y == text2_length) {
                    // Reached the end in single-path mode.
                    return diff_path1(v_map1, text1, text2);
                } else if (done) {
                    // Front path ran over reverse path.
                    v_map2 = v_map2.subList(0, footsteps.get(footstep) + 1);
                    LinkedList a = diff_path1(v_map1, text1.substring(0, x),
                            text2.substring(0, y));
                    a.addAll(diff_path2(v_map2, text1.substring(x), text2.substring(y)));
                    return a;
                }
            }
            if (doubleEnd) {
                // Walk the reverse path one step.
                v_map2.add(new HashSet());  // Adds at index 'd'.
                for (int k = -d; k <= d; k += 2) {
                    if (k == -d || k != d && v2.get(k - 1) < v2.get(k + 1)) {
                        x = v2.get(k + 1);
                    } else {
                        x = v2.get(k - 1) + 1;
                    }
                    y = x - k;
                    footstep = diff_footprint(text1_length - x, text2_length - y);
                    if (!front && (footsteps.containsKey(footstep))) {
                        done = true;
                    }
                    if (front) {
                        footsteps.put(footstep, d);
                    }
                    while (!done && x < text1_length && y < text2_length
                            && text1.charAt(text1_length - x - 1)
                            == text2.charAt(text2_length - y - 1)) {
                        x++;
                        y++;
                        footstep = diff_footprint(text1_length - x, text2_length - y);
                        if (!front && (footsteps.containsKey(footstep))) {
                            done = true;
                        }
                        if (front) {
                            footsteps.put(footstep, d);
                        }
                    }
                    v2.put(k, x);
                    v_map2.get(d).add(diff_footprint(x, y));
                    if (done) {
                        // Reverse path ran over front path.
                        v_map1 = v_map1.subList(0, footsteps.get(footstep) + 1);
                        LinkedList a
                                = diff_path1(v_map1, text1.substring(0, text1_length - x),
                                text2.substring(0, text2_length - y));
                        a.addAll(diff_path2(v_map2, text1.substring(text1_length - x),
                                text2.substring(text2_length - y)));
                        return a;
                    }
                }
            }
        }
        // Number of diffs equals number of characters, no commonality at all.
        return null;
    }
    /**
     * Work from the middle back to the start to determine the path.
     * @param v_map List of path sets.
     * @param text1 Old string fragment to be diffed.
     * @param text2 New string fragment to be diffed.
     * @return LinkedList of Diff objects.
     */
    protected LinkedList diff_path1(List> v_map,
                                          String text1, String text2) {
        LinkedList path = new LinkedList();
        int x = text1.length();
        int y = text2.length();
        Operation last_op = null;
        for (int d = v_map.size() - 2; d >= 0; d--) {
            while (true) {
                if (v_map.get(d).contains(diff_footprint(x - 1, y))) {
                    x--;
                    if (last_op == Operation.DELETE) {
                        path.getFirst().text = text1.charAt(x) + path.getFirst().text;
                    } else {
                        path.addFirst(new Diff(Operation.DELETE,
                                text1.substring(x, x + 1)));
                    }
                    last_op = Operation.DELETE;
                    break;
                } else if (v_map.get(d).contains(diff_footprint(x, y - 1))) {
                    y--;
                    if (last_op == Operation.INSERT) {
                        path.getFirst().text = text2.charAt(y) + path.getFirst().text;
                    } else {
                        path.addFirst(new Diff(Operation.INSERT,
                                text2.substring(y, y + 1)));
                    }
                    last_op = Operation.INSERT;
                    break;
                } else {
                    x--;
                    y--;
                    assert (text1.charAt(x) == text2.charAt(y))
                            : "No diagonal.  Can't happen. (diff_path1)";
                    if (last_op == Operation.EQUAL) {
                        path.getFirst().text = text1.charAt(x) + path.getFirst().text;
                    } else {
                        path.addFirst(new Diff(Operation.EQUAL, text1.substring(x, x + 1)));
                    }
                    last_op = Operation.EQUAL;
                }
            }
        }
        return path;
    }
    /**
     * Work from the middle back to the end to determine the path.
     * @param v_map List of path sets.
     * @param text1 Old string fragment to be diffed.
     * @param text2 New string fragment to be diffed.
     * @return LinkedList of Diff objects.
     */
    protected LinkedList diff_path2(List> v_map,
                                          String text1, String text2) {
        LinkedList path = new LinkedList();
        int x = text1.length();
        int y = text2.length();
        Operation last_op = null;
        for (int d = v_map.size() - 2; d >= 0; d--) {
            while (true) {
                if (v_map.get(d).contains(diff_footprint(x - 1, y))) {
                    x--;
                    if (last_op == Operation.DELETE) {
                        path.getLast().text += text1.charAt(text1.length() - x - 1);
                    } else {
                        path.addLast(new Diff(Operation.DELETE,
                                text1.substring(text1.length() - x - 1, text1.length() - x)));
                    }
                    last_op = Operation.DELETE;
                    break;
                } else if (v_map.get(d).contains(diff_footprint(x, y - 1))) {
                    y--;
                    if (last_op == Operation.INSERT) {
                        path.getLast().text += text2.charAt(text2.length() - y - 1);
                    } else {
                        path.addLast(new Diff(Operation.INSERT,
                                text2.substring(text2.length() - y - 1, text2.length() - y)));
                    }
                    last_op = Operation.INSERT;
                    break;
                } else {
                    x--;
                    y--;
                    assert (text1.charAt(text1.length() - x - 1)
                            == text2.charAt(text2.length() - y - 1))
                            : "No diagonal.  Can't happen. (diff_path2)";
                    if (last_op == Operation.EQUAL) {
                        path.getLast().text += text1.charAt(text1.length() - x - 1);
                    } else {
                        path.addLast(new Diff(Operation.EQUAL,
                                text1.substring(text1.length() - x - 1, text1.length() - x)));
                    }
                    last_op = Operation.EQUAL;
                }
            }
        }
        return path;
    }
    /**
     * Compute a good hash of two integers.
     * @param x First int.
     * @param y Second int.
     * @return A long made up of both ints.
     */
    protected long diff_footprint(int x, int y) {
        // The maximum size for a long is 9,223,372,036,854,775,807
        // The maximum size for an int is 2,147,483,647
        // Two ints fit nicely in one long.
        long result = x;
        result = result << 32;
        result += y;
        return result;
    }
    /**
     * Determine the common prefix of two strings
     * @param text1 First string.
     * @param text2 Second string.
     * @return The number of characters common to the start of each string.
     */
    public int diff_commonPrefix(String text1, String text2) {
        // Performance analysis: http://neil.fraser.name/news/2007/10/09/
        int n = Math.min(text1.length(), text2.length());
        for (int i = 0; i < n; i++) {
            if (text1.charAt(i) != text2.charAt(i)) {
                return i;
            }
        }
        return n;
    }
    /**
     * Determine the common suffix of two strings
     * @param text1 First string.
     * @param text2 Second string.
     * @return The number of characters common to the end of each string.
     */
    public int diff_commonSuffix(String text1, String text2) {
        // Performance analysis: http://neil.fraser.name/news/2007/10/09/
        int text1_length = text1.length();
        int text2_length = text2.length();
        int n = Math.min(text1_length, text2_length);
        for (int i = 1; i <= n; i++) {
            if (text1.charAt(text1_length - i) != text2.charAt(text2_length - i)) {
                return i - 1;
            }
        }
        return n;
    }
    /**
     * Do the two texts share a substring which is at least half the length of
     * the longer text?
     * @param text1 First string.
     * @param text2 Second string.
     * @return Five element String array, containing the prefix of text1, the
     *     suffix of text1, the prefix of text2, the suffix of text2 and the
     *     common middle.  Or null if there was no match.
     */
    protected String[] diff_halfMatch(String text1, String text2) {
        String longtext = text1.length() > text2.length() ? text1 : text2;
        String shorttext = text1.length() > text2.length() ? text2 : text1;
        if (longtext.length() < 10 || shorttext.length() < 1) {
            return null;  // Pointless.
        }

        // First check if the second quarter is the seed for a half-match.
        String[] hm1 = diff_halfMatchI(longtext, shorttext,
                (longtext.length() + 3) / 4);
        // Check again based on the third quarter.
        String[] hm2 = diff_halfMatchI(longtext, shorttext,
                (longtext.length() + 1) / 2);
        String[] hm;
        if (hm1 == null && hm2 == null) {
            return null;
        } else if (hm2 == null) {
            hm = hm1;
        } else if (hm1 == null) {
            hm = hm2;
        } else {
            // Both matched.  Select the longest.
            hm = hm1[4].length() > hm2[4].length() ? hm1 : hm2;
        }
        // A half-match was found, sort out the return data.
        if (text1.length() > text2.length()) {
            return hm;
            //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]};
        } else {
            return new String[]{hm[2], hm[3], hm[0], hm[1], hm[4]};
        }
    }
    /**
     * Does a substring of shorttext exist within longtext such that the
     * substring is at least half the length of longtext?
     * @param longtext Longer string.
     * @param shorttext Shorter string.
     * @param i Start index of quarter length substring within longtext.
     * @return Five element String array, containing the prefix of longtext, the
     *     suffix of longtext, the prefix of shorttext, the suffix of shorttext
     *     and the common middle.  Or null if there was no match.
     */
    private String[] diff_halfMatchI(String longtext, String shorttext, int i) {
        // Start with a 1/4 length substring at position i as a seed.
        String seed = longtext.substring(i, i + longtext.length() / 4);
        int j = -1;
        String best_common = "";
        String best_longtext_a = "", best_longtext_b = "";
        String best_shorttext_a = "", best_shorttext_b = "";
        while ((j = shorttext.indexOf(seed, j + 1)) != -1) {
            int prefixLength = diff_commonPrefix(longtext.substring(i),  shorttext.substring(j));
            int suffixLength = diff_commonSuffix(longtext.substring(0, i),
                    shorttext.substring(0, j));
            if (best_common.length() < suffixLength + prefixLength) {
                best_common = shorttext.substring(j - suffixLength, j)
                        + shorttext.substring(j, j + prefixLength);
                best_longtext_a = longtext.substring(0, i - suffixLength);
                best_longtext_b = longtext.substring(i + prefixLength);
                best_shorttext_a = shorttext.substring(0, j - suffixLength);
                best_shorttext_b = shorttext.substring(j + prefixLength);
            }
        }
        if (best_common.length() >= longtext.length() / 2) {
            return new String[]{best_longtext_a, best_longtext_b,
                    best_shorttext_a, best_shorttext_b, best_common};
        } else {
            return null;
        }
    }
    /**
     * Reduce the number of edits by eliminating semantically trivial equalities.
     * @param diffs LinkedList of Diff objects.
     */
    public void diff_cleanupSemantic(LinkedList diffs) {
        if (diffs.isEmpty()) {
            return;
        }
        boolean changes = false;
        Stack equalities = new Stack();  // Stack of qualities.
        String lastequality = null; // Always equal to equalities.lastElement().text
        ListIterator pointer = diffs.listIterator();
        // Number of characters that changed prior to the equality.
        int length_changes1 = 0;
        // Number of characters that changed after the equality.
        int length_changes2 = 0;
        Diff thisDiff = pointer.next();
        while (thisDiff != null) {
            if (thisDiff.operation == Operation.EQUAL) {
                // equality found
                equalities.push(thisDiff);
                length_changes1 = length_changes2;
                length_changes2 = 0;
                lastequality = thisDiff.text;
            } else {
                // an insertion or deletion
                length_changes2 += thisDiff.text.length();
                if (lastequality != null && (lastequality.length() <= length_changes1)
                        && (lastequality.length() <= length_changes2)) {
                    //System.out.println("Splitting: '" + lastequality + "'");
                    // Walk back to offending equality.
                    while (thisDiff != equalities.lastElement()) {
                        thisDiff = pointer.previous();
                    }
                    pointer.next();
                    // Replace equality with a delete.
                    pointer.set(new Diff(Operation.DELETE, lastequality));
                    // Insert a corresponding an insert.
                    pointer.add(new Diff(Operation.INSERT, lastequality));

                    equalities.pop();  // Throw away the equality we just deleted.
                    if (!equalities.empty()) {
                        // Throw away the previous equality (it needs to be reevaluated).
                        equalities.pop();
                    }
                    if (equalities.empty()) {
                        // There are no previous equalities, walk back to the start.
                        while (pointer.hasPrevious()) {
                            pointer.previous();
                        }
                    } else {
                        // There is a safe equality we can fall back to.
                        thisDiff = equalities.lastElement();
                        while (thisDiff != pointer.previous()) {
                            // Intentionally empty loop.
                        }
                    }
                    length_changes1 = 0;  // Reset the counters.
                    length_changes2 = 0;
                    lastequality = null;
                    changes = true;
                }
            }
            thisDiff = pointer.hasNext() ? pointer.next() : null;
        }
        if (changes) {
            diff_cleanupMerge(diffs);
        }
        diff_cleanupSemanticLossless(diffs);
    }
    /**
     * Look for single edits surrounded on both sides by equalities
     * which can be shifted sideways to align the edit to a word boundary.
     * e.g: The cat came. -> The cat came.
     * @param diffs LinkedList of Diff objects.
     */
    public void diff_cleanupSemanticLossless(LinkedList diffs) {
        String equality1, edit, equality2;
        String commonString;
        int commonOffset;
        int score, bestScore;
        String bestEquality1, bestEdit, bestEquality2;
        // Create a new iterator at the start.
        ListIterator pointer = diffs.listIterator();
        Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
        Diff thisDiff = pointer.hasNext() ? pointer.next() : null;
        Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
        // Intentionally ignore the first and last element (don't need checking).
        while (nextDiff != null) {
            if (prevDiff.operation == Operation.EQUAL &&
                    nextDiff.operation == Operation.EQUAL) {
                // This is a single edit surrounded by equalities.
                equality1 = prevDiff.text;
                edit = thisDiff.text;
                equality2 = nextDiff.text;

                // First, shift the edit as far left as possible.
                commonOffset = diff_commonSuffix(equality1, edit);
                if (commonOffset != 0) {
                    commonString = edit.substring(edit.length() - commonOffset);
                    equality1 = equality1.substring(0, equality1.length() - commonOffset);
                    edit = commonString + edit.substring(0, edit.length() - commonOffset);
                    equality2 = commonString + equality2;
                }
                // Second, step character by character right, looking for the best fit.
                bestEquality1 = equality1;
                bestEdit = edit;
                bestEquality2 = equality2;
                bestScore = diff_cleanupSemanticScore(equality1, edit)
                        + diff_cleanupSemanticScore(edit, equality2);
                while (edit.length() != 0 && equality2.length() != 0
                        && edit.charAt(0) == equality2.charAt(0)) {
                    equality1 += edit.charAt(0);
                    edit = edit.substring(1) + equality2.charAt(0);
                    equality2 = equality2.substring(1);
                    score = diff_cleanupSemanticScore(equality1, edit)
                            + diff_cleanupSemanticScore(edit, equality2);
                    // The >= encourages trailing rather than leading whitespace on edits.
                    if (score >= bestScore) {
                        bestScore = score;
                        bestEquality1 = equality1;
                        bestEdit = edit;
                        bestEquality2 = equality2;
                    }
                }

                if (!prevDiff.text.equals(bestEquality1)) {
                    // We have an improvement, save it back to the diff.
                    if (bestEquality1.length() != 0) {
                        prevDiff.text = bestEquality1;
                    } else {
                        pointer.previous(); // Walk past nextDiff.
                        pointer.previous(); // Walk past thisDiff.
                        pointer.previous(); // Walk past prevDiff.
                        pointer.remove(); // Delete prevDiff.
                        pointer.next(); // Walk past thisDiff.
                        pointer.next(); // Walk past nextDiff.
                    }
                    thisDiff.text = bestEdit;
                    if (bestEquality2.length() != 0) {
                        nextDiff.text = bestEquality2;
                    } else {
                        pointer.remove(); // Delete nextDiff.
                        nextDiff = thisDiff;
                        thisDiff = prevDiff;
                    }
                }
            }
            prevDiff = thisDiff;
            thisDiff = nextDiff;
            nextDiff = pointer.hasNext() ? pointer.next() : null;
        }
    }
    /**
     * Given two strings, compute a score representing whether the internal
     * boundary falls on logical boundaries.
     * Scores range from 5 (best) to 0 (worst).
     * @param one First string.
     * @param two Second string.
     * @return The score.
     */
    private int diff_cleanupSemanticScore(String one, String two) {
        if (one.length() == 0 || two.length() == 0) {
            // Edges are the best.
            return 5;
        }
        // Each port of this function behaves slightly differently due to
        // subtle differences in each language's definition of things like
        // 'whitespace'.  Since this function's purpose is largely cosmetic,
        // the choice has been made to use each language's native features
        // rather than force total conformity.
        int score = 0;
        // One point for non-alphanumeric.
        if (!Character.isLetterOrDigit(one.charAt(one.length() - 1))
                || !Character.isLetterOrDigit(two.charAt(0))) {
            score++;
            // Two points for whitespace.
            if (Character.isWhitespace(one.charAt(one.length() - 1))
                    || Character.isWhitespace(two.charAt(0))) {
                score++;
                // Three points for line breaks.
                if (Character.getType(one.charAt(one.length() - 1)) == Character.CONTROL
                        || Character.getType(two.charAt(0)) == Character.CONTROL) {
                    score++;
                    // Four points for blank lines.
                    if (BLANKLINEEND.matcher(one).find()
                            || BLANKLINESTART.matcher(two).find()) {
                        score++;
                    }
                }
            }
        }
        return score;
    }
    private Pattern BLANKLINEEND
            = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL);
    private Pattern BLANKLINESTART
            = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL);
    /**
     * Reduce the number of edits by eliminating operationally trivial equalities.
     * @param diffs LinkedList of Diff objects.
     */
    public void diff_cleanupEfficiency(LinkedList diffs) {
        if (diffs.isEmpty()) {
            return;
        }
        boolean changes = false;
        Stack equalities = new Stack();  // Stack of equalities.
        String lastequality = null; // Always equal to equalities.lastElement().text
        ListIterator pointer = diffs.listIterator();
        // Is there an insertion operation before the last equality.
        boolean pre_ins = false;
        // Is there a deletion operation before the last equality.
        boolean pre_del = false;
        // Is there an insertion operation after the last equality.
        boolean post_ins = false;
        // Is there a deletion operation after the last equality.
        boolean post_del = false;
        Diff thisDiff = pointer.next();
        Diff safeDiff = thisDiff;  // The last Diff that is known to be unsplitable.
        while (thisDiff != null) {
            if (thisDiff.operation == Operation.EQUAL) {
                // equality found
                if (thisDiff.text.length() < Diff_EditCost && (post_ins || post_del)) {
                    // Candidate found.
                    equalities.push(thisDiff);
                    pre_ins = post_ins;
                    pre_del = post_del;
                    lastequality = thisDiff.text;
                } else {
                    // Not a candidate, and can never become one.
                    equalities.clear();
                    lastequality = null;
                    safeDiff = thisDiff;
                }
                post_ins = post_del = false;
            } else {
                // an insertion or deletion
                if (thisDiff.operation == Operation.DELETE) {
                    post_del = true;
                } else {
                    post_ins = true;
                }
                /*
                 * Five types to be split:
                 * ABXYCD
                 * AXCD
                 * ABXC
                 * AXCD
                 * ABXC
                 */
                if (lastequality != null
                        && ((pre_ins && pre_del && post_ins && post_del)
                        || ((lastequality.length() < Diff_EditCost / 2)
                        && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0)
                        + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) {
                    //System.out.println("Splitting: '" + lastequality + "'");
                    // Walk back to offending equality.
                    while (thisDiff != equalities.lastElement()) {
                        thisDiff = pointer.previous();
                    }
                    pointer.next();

                    // Replace equality with a delete.
                    pointer.set(new Diff(Operation.DELETE, lastequality));
                    // Insert a corresponding an insert.
                    pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality));

                    equalities.pop();  // Throw away the equality we just deleted.
                    lastequality = null;
                    if (pre_ins && pre_del) {
                        // No changes made which could affect previous entry, keep going.
                        post_ins = post_del = true;
                        equalities.clear();
                        safeDiff = thisDiff;
                    } else {
                        if (!equalities.empty()) {
                            // Throw away the previous equality (it needs to be reevaluated).
                            equalities.pop();
                        }
                        if (equalities.empty()) {
                            // There are no previous questionable equalities,
                            // walk back to the last known safe diff.
                            thisDiff = safeDiff;
                        } else {
                            // There is an equality we can fall back to.
                            thisDiff = equalities.lastElement();
                        }
                        while (thisDiff != pointer.previous()) {
                            // Intentionally empty loop.
                        }
                        post_ins = post_del = false;
                    }
                    changes = true;
                }
            }
            thisDiff = pointer.hasNext() ? pointer.next() : null;
        }
        if (changes) {
            diff_cleanupMerge(diffs);
        }
    }
    /**
     * Reorder and merge like edit sections.  Merge equalities.
     * Any edit section can move as long as it doesn't cross an equality.
     * @param diffs LinkedList of Diff objects.
     */
    public void diff_cleanupMerge(LinkedList diffs) {
        diffs.add(new Diff(Operation.EQUAL, ""));  // Add a dummy entry at the end.
        ListIterator pointer = diffs.listIterator();
        int count_delete = 0;
        int count_insert = 0;
        String text_delete = "";
        String text_insert = "";
        Diff thisDiff = pointer.next();
        Diff prevEqual = null;
        int commonlength;
        while (thisDiff != null) {
            switch (thisDiff.operation) {
                case INSERT:
                    count_insert++;
                    text_insert += thisDiff.text;
                    prevEqual = null;
                    break;
                case DELETE:
                    count_delete++;
                    text_delete += thisDiff.text;
                    prevEqual = null;
                    break;
                case EQUAL:
                    if (count_delete != 0 || count_insert != 0) {
                        // Delete the offending records.
                        pointer.previous();  // Reverse direction.
                        while (count_delete-- > 0) {
                            pointer.previous();
                            pointer.remove();
                        }
                        while (count_insert-- > 0) {
                            pointer.previous();
                            pointer.remove();
                        }
                        if (count_delete != 0 && count_insert != 0) {
                            // Factor out any common prefixies.
                            commonlength = diff_commonPrefix(text_insert, text_delete);
                            if (commonlength != 0) {
                                if (pointer.hasPrevious()) {
                                    thisDiff = pointer.previous();
                                    assert thisDiff.operation == Operation.EQUAL
                                            : "Previous diff should have been an equality.";
                                    thisDiff.text += text_insert.substring(0, commonlength);
                                    pointer.next();
                                } else {
                                    pointer.add(new Diff(Operation.EQUAL,
                                            text_insert.substring(0, commonlength)));
                                }
                                text_insert = text_insert.substring(commonlength);
                                text_delete = text_delete.substring(commonlength);
                            }
                            // Factor out any common suffixies.
                            commonlength = diff_commonSuffix(text_insert, text_delete);
                            if (commonlength != 0) {
                                thisDiff = pointer.next();
                                thisDiff.text = text_insert.substring(text_insert.length()
                                        - commonlength) + thisDiff.text;
                                text_insert = text_insert.substring(0, text_insert.length()
                                        - commonlength);
                                text_delete = text_delete.substring(0, text_delete.length()
                                        - commonlength);
                                pointer.previous();
                            }
                        }
                        // Insert the merged records.
                        if (text_delete.length() != 0) {
                            pointer.add(new Diff(Operation.DELETE, text_delete));
                        }
                        if (text_insert.length() != 0) {
                            pointer.add(new Diff(Operation.INSERT, text_insert));
                        }
                        // Step forward to the equality.
                        thisDiff = pointer.hasNext() ? pointer.next() : null;
                    } else if (prevEqual != null) {
                        // Merge this equality with the previous one.
                        prevEqual.text += thisDiff.text;
                        pointer.remove();
                        thisDiff = pointer.previous();
                        pointer.next();  // Forward direction
                    }
                    count_insert = 0;
                    count_delete = 0;
                    text_delete = "";
                    text_insert = "";
                    prevEqual = thisDiff;
                    break;
            }
            thisDiff = pointer.hasNext() ? pointer.next() : null;
        }
        // System.out.println(diff);
        if (diffs.getLast().text.length() == 0) {
            diffs.removeLast();  // Remove the dummy entry at the end.
        }
        /*
         * Second pass: look for single edits surrounded on both sides by equalities
         * which can be shifted sideways to eliminate an equality.
         * e.g: ABAC -> ABAC
         */
        boolean changes = false;
        // Create a new iterator at the start.
        // (As opposed to walking the current one back.)
        pointer = diffs.listIterator();
        Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
        thisDiff = pointer.hasNext() ? pointer.next() : null;
        Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
        // Intentionally ignore the first and last element (don't need checking).
        while (nextDiff != null) {
            if (prevDiff.operation == Operation.EQUAL &&
                    nextDiff.operation == Operation.EQUAL) {
                // This is a single edit surrounded by equalities.
                if (thisDiff.text.endsWith(prevDiff.text)) {
                    // Shift the edit over the previous equality.
                    thisDiff.text = prevDiff.text + thisDiff.text.substring(0, thisDiff.text.length() - prevDiff.text.length());
                    nextDiff.text = prevDiff.text + nextDiff.text;
                    pointer.previous(); // Walk past nextDiff.
                    pointer.previous(); // Walk past thisDiff.
                    pointer.previous(); // Walk past prevDiff.
                    pointer.remove(); // Delete prevDiff.
                    pointer.next(); // Walk past thisDiff.
                    thisDiff = pointer.next(); // Walk past nextDiff.
                    nextDiff = pointer.hasNext() ? pointer.next() : null;
                    changes = true;
                } else if (thisDiff.text.startsWith(nextDiff.text)) {
                    // Shift the edit over the next equality.
                    prevDiff.text += nextDiff.text;
                    thisDiff.text = thisDiff.text.substring(nextDiff.text.length())
                            + nextDiff.text;
                    pointer.remove(); // Delete nextDiff.
                    nextDiff = pointer.hasNext() ? pointer.next() : null;
                    changes = true;
                }
            }
            prevDiff = thisDiff;
            thisDiff = nextDiff;
            nextDiff = pointer.hasNext() ? pointer.next() : null;
        }
        // If shifts were made, the diff needs reordering and another shift sweep.
        if (changes) {
            diff_cleanupMerge(diffs);
        }
    }
    /**
     * loc is a location in text1, compute and return the equivalent location in
     * text2.
     * e.g. "The cat" vs "The big cat", 1->1, 5->8
     * @param diffs LinkedList of Diff objects.
     * @param loc Location within text1.
     * @return Location within text2.
     */
    public int diff_xIndex(LinkedList diffs, int loc) {
        int chars1 = 0;
        int chars2 = 0;
        int last_chars1 = 0;
        int last_chars2 = 0;
        Diff lastDiff = null;
        for (Diff aDiff : diffs) {
            if (aDiff.operation != Operation.INSERT) {
                // Equality or deletion.
                chars1 += aDiff.text.length();
            }
            if (aDiff.operation != Operation.DELETE) {
                // Equality or insertion.
                chars2 += aDiff.text.length();
            }
            if (chars1 > loc) {
                // Overshot the location.
                lastDiff = aDiff;
                break;
            }
            last_chars1 = chars1;
            last_chars2 = chars2;
        }
        if (lastDiff != null && lastDiff.operation == Operation.DELETE) {
            // The location was deleted.
            return last_chars2;
        }
        // Add the remaining character length.
        return last_chars2 + (loc - last_chars1);
    }
    /**
     * Convert a Diff list into a pretty HTML report.
     * @param diffs LinkedList of Diff objects.
     * @return HTML representation.
     */
    public String diff_prettyHtml(LinkedList diffs) {
        StringBuilder html = new StringBuilder();
        int i = 0;
        for (Diff aDiff : diffs) {
            String text = aDiff.text.replace("&", "&").replace("<", "<")
                    .replace(">", ">").replace("\n", "¶
"); switch (aDiff.operation) { case INSERT: html.append("").append(text).append(""); break; case DELETE: html.append("").append(text).append(""); break; case EQUAL: html.append("").append(text) .append(""); break; } if (aDiff.operation != Operation.DELETE) { i += aDiff.text.length(); } } return html.toString(); } /** * Compute and return the source text (all equalities and deletions). * @param diffs LinkedList of Diff objects. * @return Source text. */ public String diff_text1(LinkedList diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { if (aDiff.operation != Operation.INSERT) { text.append(aDiff.text); } } return text.toString(); } /** * Compute and return the destination text (all equalities and insertions). * @param diffs LinkedList of Diff objects. * @return Destination text. */ public String diff_text2(LinkedList diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { if (aDiff.operation != Operation.DELETE) { text.append(aDiff.text); } } return text.toString(); } /** * Compute the Levenshtein distance; the number of inserted, deleted or * substituted characters. * @param diffs LinkedList of Diff objects. * @return Number of changes. */ public int diff_levenshtein(LinkedList diffs) { int levenshtein = 0; int insertions = 0; int deletions = 0; for (Diff aDiff : diffs) { switch (aDiff.operation) { case INSERT: insertions += aDiff.text.length(); break; case DELETE: deletions += aDiff.text.length(); break; case EQUAL: // A deletion and an insertion is one substitution. levenshtein += Math.max(insertions, deletions); insertions = 0; deletions = 0; break; } } levenshtein += Math.max(insertions, deletions); return levenshtein; } /** * Crush the diff into an encoded string which describes the operations * required to transform text1 into text2. * E.g. =3\t-2\t+ing -> Keep 3 chars, delete 2 chars, insert 'ing'. * Operations are tab-separated. Inserted text is escaped using %xx notation. * @param diffs Array of diff tuples. * @return Delta text. */ public String diff_toDelta(LinkedList diffs) { StringBuilder text = new StringBuilder(); for (Diff aDiff : diffs) { switch (aDiff.operation) { case INSERT: try { text.append("+").append(URLEncoder.encode(aDiff.text, "UTF-8") .replace('+', ' ')).append("\t"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } break; case DELETE: text.append("-").append(aDiff.text.length()).append("\t"); break; case EQUAL: text.append("=").append(aDiff.text.length()).append("\t"); break; } } String delta = text.toString(); if (delta.length() != 0) { // Strip off trailing tab character. delta = delta.substring(0, delta.length() - 1); delta = unescapeForEncodeUriCompatability(delta); } return delta; } /** * Given the original text1, and an encoded string which describes the * operations required to transform text1 into text2, compute the full diff. * @param text1 Source string for the diff. * @param delta Delta text. * @return Array of diff tuples or null if invalid. * @throws IllegalArgumentException If invalid input. */ public LinkedList diff_fromDelta(String text1, String delta) throws IllegalArgumentException { LinkedList diffs = new LinkedList(); int pointer = 0; // Cursor in text1 String[] tokens = delta.split("\t"); for (String token : tokens) { if (token.length() == 0) { // Blank tokens are ok (from a trailing \t). continue; } // Each token begins with a one character parameter which specifies the // operation of this token (delete, insert, equality). String param = token.substring(1); switch (token.charAt(0)) { case '+': // decode would change all "+" to " " param = param.replace("+", "%2B"); try { param = URLDecoder.decode(param, "UTF-8"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } catch (IllegalArgumentException e) { // Malformed URI sequence. throw new IllegalArgumentException( "Illegal escape in diff_fromDelta: " + param, e); } diffs.add(new Diff(Operation.INSERT, param)); break; case '-': // Fall through. case '=': int n; try { n = Integer.parseInt(param); } catch (NumberFormatException e) { throw new IllegalArgumentException( "Invalid number in diff_fromDelta: " + param, e); } if (n < 0) { throw new IllegalArgumentException( "Negative number in diff_fromDelta: " + param); } String text; try { text = text1.substring(pointer, pointer += n); } catch (StringIndexOutOfBoundsException e) { throw new IllegalArgumentException("Delta length (" + pointer + ") larger than source text length (" + text1.length() + ").", e); } if (token.charAt(0) == '=') { diffs.add(new Diff(Operation.EQUAL, text)); } else { diffs.add(new Diff(Operation.DELETE, text)); } break; default: // Anything else is an error. throw new IllegalArgumentException( "Invalid diff operation in diff_fromDelta: " + token.charAt(0)); } } if (pointer != text1.length()) { throw new IllegalArgumentException("Delta length (" + pointer + ") smaller than source text length (" + text1.length() + ")."); } return diffs; } // MATCH FUNCTIONS /** * Locate the best instance of 'pattern' in 'text' near 'loc'. * Returns -1 if no match found. * @param text The text to search. * @param pattern The pattern to search for. * @param loc The location to search around. * @return Best match index or -1. */ public int match_main(String text, String pattern, int loc) { loc = Math.max(0, Math.min(loc, text.length())); if (text.equals(pattern)) { // Shortcut (potentially not guaranteed by the algorithm) return 0; } else if (text.length() == 0) { // Nothing to match. return -1; } else if (loc + pattern.length() <= text.length() && text.substring(loc, loc + pattern.length()).equals(pattern)) { // Perfect match at the perfect spot! (Includes case of null pattern) return loc; } else { // Do a fuzzy compare. return match_bitap(text, pattern, loc); } } /** * Locate the best instance of 'pattern' in 'text' near 'loc' using the * Bitap algorithm. Returns -1 if no match found. * @param text The text to search. * @param pattern The pattern to search for. * @param loc The location to search around. * @return Best match index or -1. */ protected int match_bitap(String text, String pattern, int loc) { assert (Match_MaxBits == 0 || pattern.length() <= Match_MaxBits) : "Pattern too long for this application."; // Initialise the alphabet. Map s = match_alphabet(pattern); // Highest score beyond which we give up. double score_threshold = Match_Threshold; // Is there a nearby exact match? (speedup) int best_loc = text.indexOf(pattern, loc); if (best_loc != -1) { score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), score_threshold); // What about in the other direction? (speedup) best_loc = text.lastIndexOf(pattern, loc + pattern.length()); if (best_loc != -1) { score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), score_threshold); } } // Initialise the bit arrays. int matchmask = 1 << (pattern.length() - 1); best_loc = -1; int bin_min, bin_mid; int bin_max = pattern.length() + text.length(); // Empty initialization added to appease Java compiler. int[] last_rd = new int[0]; for (int d = 0; d < pattern.length(); d++) { // Scan for the best match; each iteration allows for one more error. // Run a binary search to determine how far from 'loc' we can stray at // this error level. bin_min = 0; bin_mid = bin_max; while (bin_min < bin_mid) { if (match_bitapScore(d, loc + bin_mid, loc, pattern) <= score_threshold) { bin_min = bin_mid; } else { bin_max = bin_mid; } bin_mid = (bin_max - bin_min) / 2 + bin_min; } // Use the result from this iteration as the maximum for the next. bin_max = bin_mid; int start = Math.max(1, loc - bin_mid + 1); int finish = Math.min(loc + bin_mid, text.length()) + pattern.length(); int[] rd = new int[finish + 2]; rd[finish + 1] = (1 << d) - 1; for (int j = finish; j >= start; j--) { int charMatch; if (text.length() <= j - 1 || !s.containsKey(text.charAt(j - 1))) { // Out of range. charMatch = 0; } else { charMatch = s.get(text.charAt(j - 1)); } if (d == 0) { // First pass: exact match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch; } else { // Subsequent passes: fuzzy match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1]; } if ((rd[j] & matchmask) != 0) { double score = match_bitapScore(d, j - 1, loc, pattern); // This match will almost certainly be better than any existing // match. But check anyway. if (score <= score_threshold) { // Told you so. score_threshold = score; best_loc = j - 1; if (best_loc > loc) { // When passing loc, don't exceed our current distance from loc. start = Math.max(1, 2 * loc - best_loc); } else { // Already passed loc, downhill from here on in. break; } } } } if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) { // No hope for a (better) match at greater error levels. break; } last_rd = rd; } return best_loc; } /** * Compute and return the score for a match with e errors and x location. * @param e Number of errors in match. * @param x Location of match. * @param loc Expected location of match. * @param pattern Pattern being sought. * @return Overall score for match (0.0 = good, 1.0 = bad). */ private double match_bitapScore(int e, int x, int loc, String pattern) { float accuracy = (float) e / pattern.length(); int proximity = Math.abs(loc - x); if (Match_Distance == 0) { // Dodge divide by zero error. return proximity == 0 ? accuracy : 1.0; } return accuracy + (proximity / (float) Match_Distance); } /** * Initialise the alphabet for the Bitap algorithm. * @param pattern The text to encode. * @return Hash of character locations. */ protected Map match_alphabet(String pattern) { Map s = new HashMap(); char[] char_pattern = pattern.toCharArray(); for (char c : char_pattern) { s.put(c, 0); } int i = 0; for (char c : char_pattern) { s.put(c, s.get(c) | (1 << (pattern.length() - i - 1))); i++; } return s; } // PATCH FUNCTIONS /** * Increase the context until it is unique, * but don't let the pattern expand beyond Match_MaxBits. * @param patch The patch to grow. * @param text Source text. */ protected void patch_addContext(Patch patch, String text) { if (text.length() == 0) { return; } String pattern = text.substring(patch.start2, patch.start2 + patch.length1); int padding = 0; // Look for the first and last matches of pattern in text. If two different // matches are found, increase the pattern length. while (text.indexOf(pattern) != text.lastIndexOf(pattern) && pattern.length() < Match_MaxBits - Patch_Margin - Patch_Margin) { padding += Patch_Margin; pattern = text.substring(Math.max(0, patch.start2 - padding), Math.min(text.length(), patch.start2 + patch.length1 + padding)); } // Add one chunk for good luck. padding += Patch_Margin; // Add the prefix. String prefix = text.substring(Math.max(0, patch.start2 - padding), patch.start2); if (prefix.length() != 0) { patch.diffs.addFirst(new Diff(Operation.EQUAL, prefix)); } // Add the suffix. String suffix = text.substring(patch.start2 + patch.length1, Math.min(text.length(), patch.start2 + patch.length1 + padding)); if (suffix.length() != 0) { patch.diffs.addLast(new Diff(Operation.EQUAL, suffix)); } // Roll back the start points. patch.start1 -= prefix.length(); patch.start2 -= prefix.length(); // Extend the lengths. patch.length1 += prefix.length() + suffix.length(); patch.length2 += prefix.length() + suffix.length(); } /** * Compute a list of patches to turn text1 into text2. * A set of diffs will be computed. * @param text1 Old text. * @param text2 New text. * @return LinkedList of Patch objects. */ public LinkedList patch_make(String text1, String text2) { // No diffs provided, compute our own. LinkedList diffs = diff_main(text1, text2, true); if (diffs.size() > 2) { diff_cleanupSemantic(diffs); diff_cleanupEfficiency(diffs); } return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text1 will be derived from the provided diffs. * @param diffs Array of diff tuples for text1 to text2. * @return LinkedList of Patch objects. */ public LinkedList patch_make(LinkedList diffs) { // No origin string provided, compute our own. String text1 = diff_text1(diffs); return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text2 is ignored, diffs are the delta between text1 and text2. * @param text1 Old text * @param text2 Ignored. * @param diffs Array of diff tuples for text1 to text2. * @return LinkedList of Patch objects. * @deprecated Prefer patch_make(String text1, LinkedList diffs). */ public LinkedList patch_make(String text1, String text2, LinkedList diffs) { return patch_make(text1, diffs); } /** * Compute a list of patches to turn text1 into text2. * text2 is not provided, diffs are the delta between text1 and text2. * @param text1 Old text. * @param diffs Array of diff tuples for text1 to text2. * @return LinkedList of Patch objects. */ public LinkedList patch_make(String text1, LinkedList diffs) { LinkedList patches = new LinkedList(); if (diffs.isEmpty()) { return patches; // Get rid of the null case. } Patch patch = new Patch(); int char_count1 = 0; // Number of characters into the text1 string. int char_count2 = 0; // Number of characters into the text2 string. // Start with text1 (prepatch_text) and apply the diffs until we arrive at // text2 (postpatch_text). We recreate the patches one by one to determine // context info. String prepatch_text = text1; String postpatch_text = text1; for (Diff aDiff : diffs) { if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) { // A new patch starts here. patch.start1 = char_count1; patch.start2 = char_count2; } switch (aDiff.operation) { case INSERT: patch.diffs.add(aDiff); patch.length2 += aDiff.text.length(); postpatch_text = postpatch_text.substring(0, char_count2) + aDiff.text + postpatch_text.substring(char_count2); break; case DELETE: patch.length1 += aDiff.text.length(); patch.diffs.add(aDiff); postpatch_text = postpatch_text.substring(0, char_count2) + postpatch_text.substring(char_count2 + aDiff.text.length()); break; case EQUAL: if (aDiff.text.length() <= 2 * Patch_Margin && !patch.diffs.isEmpty() && aDiff != diffs.getLast()) { // Small equality inside a patch. patch.diffs.add(aDiff); patch.length1 += aDiff.text.length(); patch.length2 += aDiff.text.length(); } if (aDiff.text.length() >= 2 * Patch_Margin) { // Time for a new patch. if (!patch.diffs.isEmpty()) { patch_addContext(patch, prepatch_text); patches.add(patch); patch = new Patch(); // Unlike Unidiff, our patch lists have a rolling context. // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff // Update prepatch text & pos to reflect the application of the // just completed patch. prepatch_text = postpatch_text; char_count1 = char_count2; } } break; } // Update the current character count. if (aDiff.operation != Operation.INSERT) { char_count1 += aDiff.text.length(); } if (aDiff.operation != Operation.DELETE) { char_count2 += aDiff.text.length(); } } // Pick up the leftover patch if not empty. if (!patch.diffs.isEmpty()) { patch_addContext(patch, prepatch_text); patches.add(patch); } return patches; } /** * Given an array of patches, return another array that is identical. * @param patches Array of patch objects. * @return Array of patch objects. */ public LinkedList patch_deepCopy(LinkedList patches) { LinkedList patchesCopy = new LinkedList(); for (Patch aPatch : patches) { Patch patchCopy = new Patch(); for (Diff aDiff : aPatch.diffs) { Diff diffCopy = new Diff(aDiff.operation, aDiff.text); patchCopy.diffs.add(diffCopy); } patchCopy.start1 = aPatch.start1; patchCopy.start2 = aPatch.start2; patchCopy.length1 = aPatch.length1; patchCopy.length2 = aPatch.length2; patchesCopy.add(patchCopy); } return patchesCopy; } /** * Merge a set of patches onto the text. Return a patched text, as well * as an array of true/false values indicating which patches were applied. * @param patches Array of patch objects * @param text Old text. * @return Two element Object array, containing the new text and an array of * boolean values. */ public Object[] patch_apply(LinkedList patches, String text) { if (patches.isEmpty()) { return new Object[]{text, new boolean[0]}; } // Deep copy the patches so that no changes are made to originals. patches = patch_deepCopy(patches); String nullPadding = patch_addPadding(patches); text = nullPadding + text + nullPadding; patch_splitMax(patches); int x = 0; // delta keeps track of the offset between the expected and actual location // of the previous patch. If there are patches expected at positions 10 and // 20, but the first patch was found at 12, delta is 2 and the second patch // has an effective expected position of 22. int delta = 0; boolean[] results = new boolean[patches.size()]; for (Patch aPatch : patches) { int expected_loc = aPatch.start2 + delta; String text1 = diff_text1(aPatch.diffs); int start_loc; int end_loc = -1; if (text1.length() > this.Match_MaxBits) { // patch_splitMax will only provide an oversized pattern in the case of // a monster delete. start_loc = match_main(text, text1.substring(0, this.Match_MaxBits), expected_loc); if (start_loc != -1) { end_loc = match_main(text, text1.substring(text1.length() - this.Match_MaxBits), expected_loc + text1.length() - this.Match_MaxBits); if (end_loc == -1 || start_loc >= end_loc) { // Can't find valid trailing context. Drop this patch. start_loc = -1; } } } else { start_loc = match_main(text, text1, expected_loc); } if (start_loc == -1) { // No match found. :( results[x] = false; // Subtract the delta for this failed patch from subsequent patches. delta -= aPatch.length2 - aPatch.length1; } else { // Found a match. :) results[x] = true; delta = start_loc - expected_loc; String text2; if (end_loc == -1) { text2 = text.substring(start_loc, Math.min(start_loc + text1.length(), text.length())); } else { text2 = text.substring(start_loc, Math.min(end_loc + this.Match_MaxBits, text.length())); } if (text1.equals(text2)) { // Perfect match, just shove the replacement text in. text = text.substring(0, start_loc) + diff_text2(aPatch.diffs) + text.substring(start_loc + text1.length()); } else { // Imperfect match. Run a diff to get a framework of equivalent // indices. LinkedList diffs = diff_main(text1, text2, false); if (text1.length() > this.Match_MaxBits && diff_levenshtein(diffs) / (float) text1.length() > this.Patch_DeleteThreshold) { // The end points match, but the content is unacceptably bad. results[x] = false; } else { diff_cleanupSemanticLossless(diffs); int index1 = 0; for (Diff aDiff : aPatch.diffs) { if (aDiff.operation != Operation.EQUAL) { int index2 = diff_xIndex(diffs, index1); if (aDiff.operation == Operation.INSERT) { // Insertion text = text.substring(0, start_loc + index2) + aDiff.text + text.substring(start_loc + index2); } else if (aDiff.operation == Operation.DELETE) { // Deletion text = text.substring(0, start_loc + index2) + text.substring(start_loc + diff_xIndex(diffs, index1 + aDiff.text.length())); } } if (aDiff.operation != Operation.DELETE) { index1 += aDiff.text.length(); } } } } } x++; } // Strip the padding off. text = text.substring(nullPadding.length(), text.length() - nullPadding.length()); return new Object[]{text, results}; } /** * Add some padding on text start and end so that edges can match something. * Intended to be called only from within patch_apply. * @param patches Array of patch objects. * @return The padding string added to each side. */ public String patch_addPadding(LinkedList patches) { int paddingLength = this.Patch_Margin; String nullPadding = ""; for (int x = 1; x <= paddingLength; x++) { nullPadding += String.valueOf((char) x); } // Bump all the patches forward. for (Patch aPatch : patches) { aPatch.start1 += paddingLength; aPatch.start2 += paddingLength; } // Add some padding on start of first diff. Patch patch = patches.getFirst(); LinkedList diffs = patch.diffs; if (diffs.isEmpty() || diffs.getFirst().operation != Operation.EQUAL) { // Add nullPadding equality. diffs.addFirst(new Diff(Operation.EQUAL, nullPadding)); patch.start1 -= paddingLength; // Should be 0. patch.start2 -= paddingLength; // Should be 0. patch.length1 += paddingLength; patch.length2 += paddingLength; } else if (paddingLength > diffs.getFirst().text.length()) { // Grow first equality. Diff firstDiff = diffs.getFirst(); int extraLength = paddingLength - firstDiff.text.length(); firstDiff.text = nullPadding.substring(firstDiff.text.length()) + firstDiff.text; patch.start1 -= extraLength; patch.start2 -= extraLength; patch.length1 += extraLength; patch.length2 += extraLength; } // Add some padding on end of last diff. patch = patches.getLast(); diffs = patch.diffs; if (diffs.isEmpty() || diffs.getLast().operation != Operation.EQUAL) { // Add nullPadding equality. diffs.addLast(new Diff(Operation.EQUAL, nullPadding)); patch.length1 += paddingLength; patch.length2 += paddingLength; } else if (paddingLength > diffs.getLast().text.length()) { // Grow last equality. Diff lastDiff = diffs.getLast(); int extraLength = paddingLength - lastDiff.text.length(); lastDiff.text += nullPadding.substring(0, extraLength); patch.length1 += extraLength; patch.length2 += extraLength; } return nullPadding; } /** * Look through the patches and break up any which are longer than the * maximum limit of the match algorithm. * @param patches LinkedList of Patch objects. */ public void patch_splitMax(LinkedList patches) { int patch_size; String precontext, postcontext; Patch patch; int start1, start2; boolean empty; Operation diff_type; String diff_text; ListIterator pointer = patches.listIterator(); Patch bigpatch = pointer.hasNext() ? pointer.next() : null; while (bigpatch != null) { if (bigpatch.length1 <= Match_MaxBits) { bigpatch = pointer.hasNext() ? pointer.next() : null; continue; } // Remove the big old patch. pointer.remove(); patch_size = Match_MaxBits; start1 = bigpatch.start1; start2 = bigpatch.start2; precontext = ""; while (!bigpatch.diffs.isEmpty()) { // Create one of several smaller patches. patch = new Patch(); empty = true; patch.start1 = start1 - precontext.length(); patch.start2 = start2 - precontext.length(); if (precontext.length() != 0) { patch.length1 = patch.length2 = precontext.length(); patch.diffs.add(new Diff(Operation.EQUAL, precontext)); } while (!bigpatch.diffs.isEmpty() && patch.length1 < patch_size - Patch_Margin) { diff_type = bigpatch.diffs.getFirst().operation; diff_text = bigpatch.diffs.getFirst().text; if (diff_type == Operation.INSERT) { // Insertions are harmless. patch.length2 += diff_text.length(); start2 += diff_text.length(); patch.diffs.addLast(bigpatch.diffs.removeFirst()); empty = false; } else if (diff_type == Operation.DELETE && patch.diffs.size() == 1 && patch.diffs.getFirst().operation == Operation.EQUAL && diff_text.length() > 2 * patch_size) { // This is a large deletion. Let it pass in one chunk. patch.length1 += diff_text.length(); start1 += diff_text.length(); empty = false; patch.diffs.add(new Diff(diff_type, diff_text)); bigpatch.diffs.removeFirst(); } else { // Deletion or equality. Only take as much as we can stomach. diff_text = diff_text.substring(0, Math.min(diff_text.length(), patch_size - patch.length1 - Patch_Margin)); patch.length1 += diff_text.length(); start1 += diff_text.length(); if (diff_type == Operation.EQUAL) { patch.length2 += diff_text.length(); start2 += diff_text.length(); } else { empty = false; } patch.diffs.add(new Diff(diff_type, diff_text)); if (diff_text.equals(bigpatch.diffs.getFirst().text)) { bigpatch.diffs.removeFirst(); } else { bigpatch.diffs.getFirst().text = bigpatch.diffs.getFirst().text .substring(diff_text.length()); } } } // Compute the head context for the next patch. precontext = diff_text2(patch.diffs); precontext = precontext.substring(Math.max(0, precontext.length() - Patch_Margin)); // Append the end context for this patch. if (diff_text1(bigpatch.diffs).length() > Patch_Margin) { postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin); } else { postcontext = diff_text1(bigpatch.diffs); } if (postcontext.length() != 0) { patch.length1 += postcontext.length(); patch.length2 += postcontext.length(); if (!patch.diffs.isEmpty() && patch.diffs.getLast().operation == Operation.EQUAL) { patch.diffs.getLast().text += postcontext; } else { patch.diffs.add(new Diff(Operation.EQUAL, postcontext)); } } if (!empty) { pointer.add(patch); } } bigpatch = pointer.hasNext() ? pointer.next() : null; } } /** * Take a list of patches and return a textual representation. * @param patches List of Patch objects. * @return Text representation of patches. */ public String patch_toText(List patches) { StringBuilder text = new StringBuilder(); for (Patch aPatch : patches) { text.append(aPatch); } return text.toString(); } /** * Parse a textual representation of patches and return a List of Patch * objects. * @param textline Text representation of patches. * @return List of Patch objects. * @throws IllegalArgumentException If invalid input. */ public List patch_fromText(String textline) throws IllegalArgumentException { List patches = new LinkedList(); if (textline.length() == 0) { return patches; } List textList = Arrays.asList(textline.split("\n")); LinkedList text = new LinkedList(textList); Patch patch; Pattern patchHeader = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$"); Matcher m; char sign; String line; while (!text.isEmpty()) { m = patchHeader.matcher(text.getFirst()); if (!m.matches()) { throw new IllegalArgumentException( "Invalid patch string: " + text.getFirst()); } patch = new Patch(); patches.add(patch); patch.start1 = Integer.parseInt(m.group(1)); if (m.group(2).length() == 0) { patch.start1--; patch.length1 = 1; } else if ("0".equals(m.group(2))) { patch.length1 = 0; } else { patch.start1--; patch.length1 = Integer.parseInt(m.group(2)); } patch.start2 = Integer.parseInt(m.group(3)); if (m.group(4).length() == 0) { patch.start2--; patch.length2 = 1; } else if ("0".equals(m.group(4))) { patch.length2 = 0; } else { patch.start2--; patch.length2 = Integer.parseInt(m.group(4)); } text.removeFirst(); while (!text.isEmpty()) { try { sign = text.getFirst().charAt(0); } catch (IndexOutOfBoundsException e) { // Blank line? Whatever. text.removeFirst(); continue; } line = text.getFirst().substring(1); line = line.replace("+", "%2B"); // decode would change all "+" to " " try { line = URLDecoder.decode(line, "UTF-8"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } catch (IllegalArgumentException e) { // Malformed URI sequence. throw new IllegalArgumentException( "Illegal escape in patch_fromText: " + line, e); } if (sign == '-') { // Deletion. patch.diffs.add(new Diff(Operation.DELETE, line)); } else if (sign == '+') { // Insertion. patch.diffs.add(new Diff(Operation.INSERT, line)); } else if (sign == ' ') { // Minor equality. patch.diffs.add(new Diff(Operation.EQUAL, line)); } else if (sign == '@') { // Start of next patch. break; } else { // WTF? throw new IllegalArgumentException( "Invalid patch mode '" + sign + "' in: " + line); } text.removeFirst(); } } return patches; } /** * Class representing one diff operation. */ public static class Diff { /** * One of: INSERT, DELETE or EQUAL. */ public Operation operation; /** * The text associated with this diff operation. */ public String text; /** * Constructor. Initializes the diff with the provided values. * @param operation One of INSERT, DELETE or EQUAL. * @param text The text being applied. */ public Diff(Operation operation, String text) { // Construct a diff with the specified operation and text. this.operation = operation; this.text = text; } /** * Display a human-readable version of this Diff. * @return text version. */ @Override public String toString() { String prettyText = this.text.replace('\n', '\u00b6'); return "Diff(" + this.operation + ",\"" + prettyText + "\")"; } /** * Is this Diff equivalent to another Diff? * @param d Another Diff to compare against. * @return true or false. */ @Override public boolean equals(Object d) { try { return (((Diff) d).operation == this.operation) && (((Diff) d).text.equals(this.text)); } catch (ClassCastException e) { return false; } } } /** * Class representing one patch operation. */ public static class Patch { public LinkedList diffs; public int start1; public int start2; public int length1; public int length2; /** * Constructor. Initializes with an empty list of diffs. */ public Patch() { this.diffs = new LinkedList(); } /** * Emmulate GNU diff's format. * Header: @@ -382,8 +481,9 @@ * Indicies are printed as 1-based, not 0-based. * @return The GNU diff string. */ @Override public String toString() { String coords1, coords2; if (this.length1 == 0) { coords1 = this.start1 + ",0"; } else if (this.length1 == 1) { coords1 = Integer.toString(this.start1 + 1); } else { coords1 = (this.start1 + 1) + "," + this.length1; } if (this.length2 == 0) { coords2 = this.start2 + ",0"; } else if (this.length2 == 1) { coords2 = Integer.toString(this.start2 + 1); } else { coords2 = (this.start2 + 1) + "," + this.length2; } StringBuilder text = new StringBuilder(); text.append("@@ -").append(coords1).append(" +").append(coords2) .append(" @@\n"); // Escape the body of the patch with %xx notation. for (Diff aDiff : this.diffs) { switch (aDiff.operation) { case INSERT: text.append('+'); break; case DELETE: text.append('-'); break; case EQUAL: text.append(' '); break; } try { text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' ')) .append("\n"); } catch (UnsupportedEncodingException e) { // Not likely on modern system. throw new Error("This system does not support UTF-8.", e); } } return unescapeForEncodeUriCompatability(text.toString()); } } /** * Unescape selected chars for compatability with JavaScript's encodeURI. * In speed critical applications this could be dropped since the * receiving application will certainly decode these fine. * Note that this function is case-sensitive. Thus "%3f" would not be * unescaped. But this is ok because it is only called with the output of * URLEncoder.encode which returns uppercase hex. * * Example: "%3F" -> "?", "%24" -> "$", etc. * * @param str The string to escape. * @return The escaped string. */ private static String unescapeForEncodeUriCompatability(String str) { return str.replace("%21", "!").replace("%7E", "~") .replace("%27", "'").replace("%28", "(").replace("%29", ")") .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?") .replace("%3A", ":").replace("%40", "@").replace("%26", "&") .replace("%3D", "=").replace("%2B", "+").replace("%24", "$") .replace("%2C", ",").replace("%23", "#"); } public String getHtmlDiffString(String text1,String text2){ return diff_prettyHtml(diff_main(text1,text2)); } }

2.3 实现自定义动态计算列宽度

        在生成对比结果Excel文件中,需要根据不同的内容动态计算列宽,详细代码如下:

package com.demo.common.excel;

import com.alibaba.excel.metadata.Head;
import com.alibaba.excel.metadata.data.WriteCellData;
import com.alibaba.excel.write.metadata.holder.WriteSheetHolder;
import com.alibaba.excel.write.style.column.AbstractColumnWidthStyleStrategy;
import org.apache.poi.ss.usermodel.Cell;

import java.util.List;

/**
 * 导出表格宽度设置
 */
public class LongestCellWidthHandler extends AbstractColumnWidthStyleStrategy {

    /*列宽计算逻辑:以下标为1的列的宽度计算逻辑说明下,正常情况下设置的列宽是33乘以256,
            但实际上我们生成的excel中列宽是32.22,因为字体样式、大小以及单元格边框等占用额外的像素,
            所以实际的列宽比代码中设置的列宽要小0.78英寸(excel中的列宽单位是英寸),代码中设置的33也是英寸单位,
            那么实际我们需要设置成33.78英寸,但33.78乘以256是Double类型的数值,
            setColumnWidth的第二个参数必须是整数,所以在33.78*256=8647.68的基础上向上取整为8648*//*
    */
    @Override
    protected void setColumnWidth(WriteSheetHolder writeSheetHolder, List> cellDataList, Cell cell, Head head, Integer relativeRowIndex, Boolean isHead) {
        if (Boolean.TRUE.equals(isHead)) {
            int columnWidth = cell.getStringCellValue().length();
            columnWidth = Math.max(columnWidth * 5, 20);
            if (columnWidth > 255) {
                columnWidth = 255;
            }
            writeSheetHolder.getSheet().setColumnWidth(cell.getColumnIndex(), "对比结果".equals(cell.getStringCellValue().trim()) ? 12800 : columnWidth * 256);
            writeSheetHolder.getSheet().setColumnWidth(cell.getColumnIndex(), "参考文件".equals(cell.getStringCellValue().trim()) ? 12800 : columnWidth * 256);
        }
    }
}

2.4 实现Excel特定列的样式

比对结果为富文本样式,需要对Excel制定列的样式进行特殊处理,具体代码如下:

import com.alibaba.excel.metadata.Head;
import com.alibaba.excel.metadata.data.WriteCellData;
import com.alibaba.excel.write.handler.CellWriteHandler;
import com.alibaba.excel.write.metadata.holder.WriteSheetHolder;
import com.alibaba.excel.write.metadata.holder.WriteTableHolder;
import com.alibaba.fastjson.JSON;
import com.demmo.common.utils.DiffMatchPatch;
import org.apache.poi.ss.usermodel.*;
import org.apache.poi.ss.util.CellAddress;
import org.apache.poi.xssf.usermodel.XSSFRichTextString;

import java.util.List;

/**
 * 自定义导出样式
 */
public class CustomCellWriteHandler implements CellWriteHandler {

    @Override
    public void afterCellDispose(WriteSheetHolder writeSheetHolder, WriteTableHolder writeTableHolder, List> cellDataList, Cell cell, Head head, Integer relativeRowIndex, Boolean isHead) {
        CellAddress address = cell.getAddress();
        int column = address.getColumn();
        if (!isHead && (column == 1)) {//指定那些列需要做定制化样式
            Sheet sheet = writeSheetHolder.getSheet();
            Workbook workbook = sheet.getWorkbook();
            // xlsx格式,如果是老版本格式的话就用 HSSFRichTextString
            String stringCellValue = cell.getStringCellValue();
            try {
                List diffs = JSON.parseArray(stringCellValue, DiffMatchPatch.Diff.class);
                XSSFRichTextString richString = new XSSFRichTextString(cell.getStringCellValue());
                // 再设置回每个单元格里
                cell.setCellValue(diff_prettyHtml(diffs, workbook, richString, cell));
            } catch (Exception e) {
                System.out.println("stringCellValue:" + stringCellValue);
            }
        }
    }

    public XSSFRichTextString diff_prettyHtml(List diffs, Workbook workbook, XSSFRichTextString richString, Cell cell) {
        int i = 0;
        StringBuffer sourceBuffer = new StringBuffer("");
        for (DiffMatchPatch.Diff diff : diffs) {
            sourceBuffer.append(diff.text);
        }
        richString.setString(sourceBuffer.toString());
        for (DiffMatchPatch.Diff aDiff : diffs) {
            int startIndex = i;
            i += aDiff.text.length();
            int endIndex = i;
            switch (aDiff.operation) {
                case INSERT:
                    Font font = workbook.createFont();
                    font.setColor(IndexedColors.SKY_BLUE.index);
                    richString.applyFont(startIndex, endIndex, font);
                    break;
                case DELETE:
                    Font font2 = workbook.createFont();
                    font2.setColor(Font.COLOR_RED);
                    font2.setStrikeout(true);
                    richString.applyFont(startIndex, endIndex, font2);
                    break;
                case EQUAL:
                    Font font3 = workbook.createFont();
                    richString.applyFont(startIndex, endIndex, font3);
                    break;
            }
        }
        return richString;
    }
}


2.5 编写测试程序,查看效果

可自行编写测试程序,查看完整的效果。这里简单举例,具体代码如下:

import com.demo.common.excel.CellStyleUtils;
import com.demo.common.excel.CustomCellWriteHandler;
import com.demo.common.excel.LongestCellWidthHandler;
import com.demo.common.utils.DiffMatchPatch;
import com.demo.common.utils.JsonUtils;
import com.demo.common.utils.MapUtils;
import com.demo.common.utils.StringUtils;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.*;

public class ExcelDiffExportDemo {

    public static void main(String[] args){
        List> list=new ArrayList<>();
        Map mapObj1=new HashMap<>();
        mapObj1.put("name","张三");
        mapObj1.put("like1","我喜欢吃苹果");
        mapObj1.put("like2","我喜欢吃草莓");
        list.add(mapObj1);
        Map mapObj2=new HashMap<>();
        mapObj2.put("name","李四");
        mapObj2.put("like1","我喜欢吃西瓜");
        mapObj2.put("like2","我喜欢吃西瓜和草莓");
        list.add(mapObj2);
        Map mapObj3=new HashMap<>();
        mapObj3.put("name","王五");
        mapObj3.put("like2","我喜欢吃苹果");
        mapObj3.put("like1","我不喜欢吃苹果,喜欢吃香蕉");
        list.add(mapObj3);
        List> exportData = new ArrayList<>();
        for (Map mapObj : list) {
            DiffMatchPatch dmp = new DiffMatchPatch();
            System.out.println(mapObj);
            LinkedList diffs = dmp.diff_main(MapUtils.getValueString(mapObj,"like1"), MapUtils.getValueString(mapObj,"like2"));
            List itemList = new ArrayList<>();
            itemList.add(MapUtils.getValueString(mapObj,"name"));
            itemList.add(JsonUtils.toJsonString(diffs));
            exportData.add(itemList);
        }
        String fileName="水果喜好";
        List> headList=new ArrayList>();
        List head1 = new ArrayList<>();
        head1.add(fileName);
        head1.add("姓名");
        List head2 = new ArrayList<>();
        head2.add(fileName);
        head2.add("爱好对比结果");
        headList.add(head1);
        headList.add(head2);
        FileOutputStream outputStream = null;
        try {
            outputStream = new FileOutputStream(new File("D:\\doc\\202304\\like.xlsx"));
            EasyExcel.write(outputStream).inMemory(true).registerWriteHandler(CellStyleUtils.getHorizontalCellStyleStrategy())
                .registerWriteHandler(new LongestCellWidthHandler()).registerWriteHandler(new CustomCellWriteHandler())
                .head(headList).sheet("小朋友水果爱好比对").doWrite(exportData);
            outputStream.flush();
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            try {
                // 关闭文件流
                outputStream.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
}

以上是完整的实现过程和代码,相信JAVA开发的小伙伴们一定用的上。

你可能感兴趣的:(java,excel,python)