size():返回容纳的元素个数
capacity():返回当前分配存储的容量
const_iterator:常性迭代器,指向的对象的属性为常性;
const iterator:常性的普通迭代器,迭代器自身属性为常性;
reserve():预留存储空间,只改变capacity
增加 vector 的容量到大于或等于 new_cap 的值。若 new_cap 大于当前的 capacity() ,则分配新存储,否则该方法不做任何事。reserve() 不更改 vector 的 size 。
若 new_cap 大于 capacity() ,则所有迭代器,包含尾后迭代器和所有到元素的引用都被非法化。否则,没有迭代器或引用被非法化。
#include
#include
using namespace std;
class Value
{
public:
Value()
{
cout << "Value()"<< endl;
}
~Value()
{
cout << "~Value()" << endl;
}
};
void Vector_user()
{
vector<Value> vec;
//vec.resize(10);
vec.reserve(10);
cout << vec.capacity()<< endl;
cout << vec.size()<< endl;
}
int main()
{
Vector_user();
return 0;
}
resize():改变容器中可存储元素的个数size和capacity,并调用默认的构造函数
#include
#include
using namespace std;
class Value
{
public:
Value()
{
cout << "Value()"<< endl;
}
~Value()
{
cout << "~Value()" << endl;
}
};
void Vector_user()
{
vector<Value> vec;
vec.resize(10);
//vec.reserve(10);
cout << vec.capacity()<< endl;
cout << vec.size()<< endl;
}
int main()
{
Vector_user();
return 0;
}
1.push_back()
#include
#include
using namespace std;
class Object
{
private:
int val;
public:
Object(int x = 0):val(x)
{
cout << "Object(int x)"<< endl;
}
Object(const Object& src): val(src.val)
{
cout << "Object(const Object& src)" << endl;
}
Object(Object&& src) : val(src.val)
{
cout << "Object(Object&& src)" << endl;
}
Object& operator=(const Object& src)
{
val = src.val;
cout << "=" << endl;
return *this;
}
Object& operator=(Object&& src)
{
val = src.val;
cout << "=&" << endl;
return *this;
}
~Object()
{
cout << "~Object()" << endl;
}
};
void fun()
{
std::vector<Object> vcobj;
vcobj.reserve(5);
vcobj.push_back(10);
//vcobj.push_back(Object(10));
}
int main()
{
fun();
return 0;
}
push_back(10);
push_back(Object(10));
两种方式构造对象的顺序个数都相同!
Object obj(10);
vcobj.push_back(obj);
2. emplace()原位构造
void fun()
{
std::vector<Object> vcobj;
vcobj.reserve(5);
vcobj.emplace_back(10);
}
void fun()
{
std::vector<Object> vcobj;
vcobj.reserve(5);
vcobj.emplace_back(Object(10));
}
void fun()
{
std::vector<Object> vcobj;
vcobj.reserve(5);
Object obj(10);
vcobj.emplace_back(obj);
}
定位new:直接在指定的地址空间内调用构造函数
完美转发:保留传参的右值属性
可变参数:根据传参个数类型,调用不同的构造函数
template<class T, class ...Arg>
void Make(T* p, Arg... arg)
{
new(p) T(std::forward<Arg...>(arg)...);
}
int main()
{
//1.开辟空间
Object* p = (Object*)malloc(sizeof(Object));
//2.在p指向的地址空间调用构造Object(10)
Make(p, 10);
//3.释放空间并调用析构函数
delete p;
return 0;
}