Kubernetes 1.18主要更新内容
1、Kubernetes拓扑管理器(Topology Manager ) 升级到Beta版
拓扑管理器功能 是1.18版中Kubernetes的beta版本功能,它可以使CPU和设备(如SR-IOV VFs)实现NUMA,这将使你的工作负载在针对低延迟而优化的环境中运行。在引入拓扑管理器之前,CPU和设备管理器会做出彼此独立的资源分配决策,那么可能会导致在多套接字( multi-socket )系统上分配不良,从而导致关键型应用程序的性能下降。
2、Serverside Apply引入Beta 2版本
Server-side Apply 在1.16中被升级为Beta,在1.18中引入Beta 2版本。这个新版本将跟踪和管理所有新Kubernetes对象的字段更改,从而使你知道更改了什么资源以及何时更改的。
3、使用IngressClass扩展Ingress,并用IngressClass替换不推荐使用的注释
在Kubernetes 1.18中,Ingress有两个重要的补充:一个新pathType字段和一个新IngressClass资源。该pathType字段允许指定路径应如何匹配。除了默认ImplementationSpecific类型外,还有new Exact和Prefixpath类型。
该IngressClass资源用于描述Kubernetes集群中的Ingress类型。入口可以通过ingressClassName在入口上使用新字段来指定与它们关联的类。这个新资源和字段替换了不建议使用的kubernetes.io/ingress.class注释。
4、SIG-CLI引入kubectl debug命令
SIG-CLI一直在争论是否需要调试实用程序。随着临时容器(ephemeral containers)的发展,开发人员越来越需要更多类似kubectl exec的命令。该kubectl debug命令的添加(它是Alpha版本,但欢迎你提供反馈),使开发人员可以轻松地在集群中调试其Pod。我们认为这种增加是无价的。此命令允许创建一个临时容器,该容器在要检查的Pod旁边运行,并且还附加到控制台以进行交互式故障排除。
5、Alpha版本引入Windows CSI
随着Kubernetes 1.18的发布,用于Windows的CSI代理的Alpha版本也已发布。CSI代理使非特权(预先批准)的容器能够在Windows上执行特权存储操作。现在,可以利用CSI代理在Windows中支持CSI驱动程序。
更多新特性请查看官网: 1.18新特性
本次环境说明:
kubeadm需要的CPU配置最低为2核
IP | 主机名 | 节点 | 系统配置 |
---|---|---|---|
10.0.0.70 | master1 | master | CentOS7.8 & 2C4G |
10.0.0.71 | node1 | node | CentOS7.8 & 2C4G |
10.0.0.72 | node2 | node | CentOS7.8 & 2C4G |
一、初始化环境
批量修改主机名,以及免密
# host绑定
cat >> /etc/hosts <
所有节点关闭Selinux、iptables、swap分区
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -X && iptables -F -t nat && iptables -X -t nat
iptables -P FORWARD ACCEPT
swapoff -a
sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
setenforce 0
sed -i 's/^SELINUX=.*/SELINUX=disabled/' /etc/selinux/config
所有节点配置yum源
curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo
wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo
yum clean all
yum makecache
由于开启内核 ipv4 转发需要加载 br_netfilter 模块,所以加载下该模块:
#每台节点
modprobe br_netfilter
modprobe ip_conntrack
优化内核参数
cat > /etc/sysctl.d/kubernetes.conf <
# 分发到所有节点
for i in master1 node1 node2
do
scp kubernetes.conf root@$i:/etc/sysctl.d/
ssh root@$i sysctl -p /etc/sysctl.d/kubernetes.conf
done
bridge-nf 使得netfilter可以对Linux网桥上的 IPv4/ARP/IPv6 包过滤。比如,设置net.bridge.bridge-nf-call-iptables=1后,二层的网桥在转发包时也会被 iptables的 FORWARD 规则所过滤。常用的选项包括:
net.bridge.bridge-nf-call-arptables:是否在 arptables 的 FORWARD 中过滤网桥的 ARP 包
net.bridge.bridge-nf-call-ip6tables:是否在 ip6tables 链中过滤 IPv6 包
net.bridge.bridge-nf-call-iptables:是否在 iptables 链中过滤 IPv4 包
net.bridge.bridge-nf-filter-vlan-tagged:是否在 iptables/arptables 中过滤打了 vlan 标签的包。
所有节点安装ipvs
为什么要使用IPVS,从k8s的1.8版本开始,kube-proxy引入了IPVS模式,IPVS模式与iptables同样基于Netfilter,但是采用的hash表,因此当service数量达到一定规模时,hash查表的速度优势就会显现出来,从而提高service的服务性能。
cat > /etc/sysconfig/modules/ipvs.modules <
所有节点安装ipset
yum install ipset -y
ipset介绍
iptables是Linux服务器上进行网络隔离的核心技术,内核在处理网络请求时会对iptables中的策略进行逐条解析,因此当策略较多时效率较低;而是用IPSet技术可以将策略中的五元组(协议,源地址,源端口,目的地址,目的端口)合并到有限的集合中,可以大大减少iptables策略条目从而提高效率。测试结果显示IPSet方式效率将比iptables提高100倍
为了方面ipvs管理,这里安装一下ipvsadm。
yum install ipvsadm -y
所有节点设置系统时区
timedatectl set-timezone Asia/Shanghai
#将当前的 UTC 时间写入硬件时钟
timedatectl set-local-rtc 0
#重启依赖于系统时间的服务
systemctl restart rsyslog
systemctl restart crond
最后一步最好update一下 (可选操作)
yum update -y
二、 安装docker
#所有机器
export VERSION=19.03
curl -fsSL "https://get.docker.com/" | bash -s -- --mirror Aliyun
# 配置镜像加速
mkdir -p /etc/docker/
cat>/etc/docker/daemon.json<
启动docker
[root@master1 ~]# systemctl start docker && systemctl enable docker
三、 安装kubeadm
默认yum源在国外,这里需要修改为国内阿里源
cat </etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=0
EOF
安装kubeadmin、kubectl和kubelet服务。
yum install -y \
kubeadm-1.18.3 \
kubectl-1.18.3 \
kubelet-1.18.3 \
--disableexcludes=kubernetes && \
systemctl enable kubelet
查看Kubernetes所需要的镜像版本号。并提前下载好所需的七个镜像。
kubeadm config images pull --image-repository=registry.aliyuncs.com/google_containers --kubernetes-version=v1.18.3
初始化Master节点。
# –-pod-network-cidr:用于指定Pod的网络范围
# –-service-cidr:用于指定service的网络范围;
# --image-repository: 镜像仓库的地址,和提前下载的镜像仓库应该对应上。
kubeadm init --kubernetes-version=v1.18.3 \
--pod-network-cidr=10.244.0.0/16 \
--service-cidr=10.1.0.0/16 \
--image-repository=registry.aliyuncs.com/google_containers
W0408 10:10:19.704855 9534 configset.go:202] WARNING: kubeadm cannot validate component configs for API groups [kubelet.config.k8s.io kubeproxy.config.k8s.io]
[init] Using Kubernetes version: v1.18.0
[preflight] Running pre-flight checks
[WARNING IsDockerSystemdCheck]: detected "cgroupfs" as the Docker cgroup driver. The recommended driver is "systemd". Please follow the guide at https://kubernetes.io/docs/setup/cri/
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Starting the kubelet
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
[certs] Generating "apiserver" certificate and key
[certs] apiserver serving cert is signed for DNS names [k8s-master kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.1.0.1 192.168.1.50]
[certs] Generating "apiserver-kubelet-client" certificate and key
[certs] Generating "front-proxy-ca" certificate and key
[certs] Generating "front-proxy-client" certificate and key
[certs] Generating "etcd/ca" certificate and key
[certs] Generating "etcd/server" certificate and key
[certs] etcd/server serving cert is signed for DNS names [k8s-master localhost] and IPs [192.168.1.50 127.0.0.1 ::1]
[certs] Generating "etcd/peer" certificate and key
[certs] etcd/peer serving cert is signed for DNS names [k8s-master localhost] and IPs [192.168.1.50 127.0.0.1 ::1]
[certs] Generating "etcd/healthcheck-client" certificate and key
[certs] Generating "apiserver-etcd-client" certificate and key
[certs] Generating "sa" key and public key
[kubeconfig] Using kubeconfig folder "/etc/kubernetes"
[kubeconfig] Writing "admin.conf" kubeconfig file
[kubeconfig] Writing "kubelet.conf" kubeconfig file
[kubeconfig] Writing "controller-manager.conf" kubeconfig file
[kubeconfig] Writing "scheduler.conf" kubeconfig file
[control-plane] Using manifest folder "/etc/kubernetes/manifests"
[control-plane] Creating static Pod manifest for "kube-apiserver"
[control-plane] Creating static Pod manifest for "kube-controller-manager"
W0408 10:10:29.102901 9534 manifests.go:225] the default kube-apiserver authorization-mode is "Node,RBAC"; using "Node,RBAC"
[control-plane] Creating static Pod manifest for "kube-scheduler"
W0408 10:10:29.104505 9534 manifests.go:225] the default kube-apiserver authorization-mode is "Node,RBAC"; using "Node,RBAC"
[etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests"
[wait-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manifests". This can take up to 4m0s
[apiclient] All control plane components are healthy after 26.007875 seconds
[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.18" in namespace kube-system with the configuration for the kubelets in the cluster
[upload-certs] Skipping phase. Please see --upload-certs
[mark-control-plane] Marking the node k8s-master as control-plane by adding the label "node-role.kubernetes.io/master=''"
[mark-control-plane] Marking the node k8s-master as control-plane by adding the taints [node-role.kubernetes.io/master:NoSchedule]
[bootstrap-token] Using token: 4oxcgj.1dqz97nbu4pcf84l
[bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles
[bootstrap-token] configured RBAC rules to allow Node Bootstrap tokens to get nodes
[bootstrap-token] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials
[bootstrap-token] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token
[bootstrap-token] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
[bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace
[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point to a rotatable kubelet client certificate and key
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 10.0.0.70:6443 --token 4oxcgj.1dqz97nbu4pcf84l \
--discovery-token-ca-cert-hash sha256:2445a08ab9e210e9d3f82949ae16472d47abbc188a2b28e4d6470b02d5ddce3a
出现Your Kubernetes control-plane has initialized successfully!
即可
初始化完成后,需要按照提示执行以下命令。注意最后的join命令后续会使用到,需要记录。
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
查看Kubernetes状态。
# 还是NotReady状态
kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master NotReady master 4m45s v1.18.3
······
部署flannel网络。
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
删除kube-flannel.yml
中的kube-flannel-ds-arm64
、kube-flannel-ds-arm
、kube-flannel-ds-ppc64le
和kube-flannel-ds-s390x
这4个daemonset
删除,只保留kube-flannel-ds-amd64
,因为一般的实验环境都是amd64架构的。
# 修改镜像地址为:
[root@master1 ~]# vim flannel.yml
····
····
image: registry.cn-hangzhou.aliyuncs.com/ljcc/flannel:v0.12.0-amd64
···
···
kubectl apply -f kube-flannel.yml
kubectl get nodes
NAME STATUS ROLES AGE VERSION
master1 Ready master 14m v1.18.3
# 即可看到全部为running状态
kubectl get all -n kube-system
NAME READY STATUS RESTARTS AGE
pod/coredns-7ff77c879f-8flq5 1/1 Running 0 23m
pod/coredns-7ff77c879f-xth7n 1/1 Running 0 23m
pod/etcd-k8s-master 1/1 Running 0 24m
pod/kube-apiserver-k8s-master 1/1 Running 0 18m
pod/kube-controller-manager-k8s-master 1/1 Running 1 24m
pod/kube-flannel-ds-amd64-8nft4 1/1 Running 0 13m
pod/kube-proxy-fk7tn 1/1 Running 0 23m
pod/kube-scheduler-k8s-master 1/1 Running 1 24m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kube-dns ClusterIP 10.1.0.10 53/UDP,53/TCP,9153/TCP 24m
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
daemonset.apps/kube-flannel-ds-amd64 1 1 1 1 1 13m
daemonset.apps/kube-proxy 1 1 1 1 1 kubernetes.io/os=linux 24m
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/coredns 2/2 2 2 24m
NAME DESIRED CURRENT READY AGE
replicaset.apps/coredns-7ff77c879f 2 2 2 23m
join node节点到kubernetes集群
kubeadm join 10.0.0.70:6443 --token 4oxcgj.1dqz97nbu4pcf84l \
--discovery-token-ca-cert-hash sha256:2445a08ab9e210e9d3f82949ae16472d47abbc188a2b28e4d6470b02d5ddce3a
若忘记 token和hash指:
# 查看hash值
openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl rsa -pubin -outform der 2>/dev/null | openssl dgst -sha256 -hex | sed 's/^ .* //'
# 查看token
kubeadm token list
查看kubeernetes集群状态
[root@master1 ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
master1 Ready master 9h v1.18.3
node1 Ready 8h v1.18.3
node2 Ready 8h v1.18.3
完成!
不足之处,下次优化。
文中部分参考来源