树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I…等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
class Node {
int value; // 树中存储的数据
Node firstChild; // 第一个孩子引用
Node nextBrother; // 下一个兄弟引用
}
一棵二叉树是结点的一个有限集合,该集合:
从上图可以看出:
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
顺序存储在下个博客介绍。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
public class BinaryTree{
public static class BTNode{
BTNode left;
BTNode right;
int value;
BTNode(int value){
this.value = value;
}
}
private BTNode root;
public void createBinaryTree(){
BTNode node1 = new BTNode(1);
BTNode node2 = new BTNode(2);
BTNode node3 = new BTNode(3);
BTNode node4 = new BTNode(4);
BTNode node5 = new BTNode(5);
BTNode node6 = new BTNode(6);
root = node1;
node1.left = node2;
node2.left = node3;
node1.right = node4;
node4.left = node5;
node5.right = node6;
}
}
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解
再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
// 前序遍历
void preOrder(TreeNode root){
if(root == null) {
return;
}
System.out.print(root.val+" ");
preOrder(root.left);
preOrder(root.right);
}
// 中序遍历 -》 左根右
void inOrder(TreeNode root){
if(root == null) {
return;
}
inOrder(root.left);
System.out.print(root.val+" ");
inOrder(root.right);
}
// 后序遍历 -》 左右根
void postOrder(TreeNode root){
if(root == null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.print(root.val+" ");
}
下面主要分析前序递归遍历,中序与后序图解类似,同学们可自己动手绘制。
前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 1 5 6 4 1
2. 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在
层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层
上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
获取树中节点的个数
public int nodeSize;
// 获取树中节点的个数
int size(TreeNode root) {
if(root == null) {
return 0;
}
nodeSize++;
size(root.left);
size(root.right);
return nodeSize;
}
获取叶子节点的个数
public int leafSize;
// 获取叶子节点的个数
int getLeafNodeCount1(TreeNode root){
if(root == null) {
return 0;
}
if(root.left == null && root.right == null) {
leafSize++;
}
getLeafNodeCount1(root.left);
getLeafNodeCount1(root.right);
return leafSize;
}
获取第K层节点的个数
// 获取第K层节点的个数
int getKLevelNodeCount(TreeNode root,int k) {
if(root == null) {
return 0;
}
if(k == 1) {
return 1;
}
return getKLevelNodeCount(root.left,k-1) +
getKLevelNodeCount(root.right,k-1);
}
获取二叉树的高度
// 获取二叉树的高度 时间复杂度O(N)
int getHeight(TreeNode root) {
if(root == null) {
return 0;
}
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
return leftHeight > rightHeight ? leftHeight+1:
rightHeight+1;
}
检测值为value的元素是否存在
TreeNode find(TreeNode root, char val) {
if(root == null) {
return null;
}
if(root.val == val) {
return root;
}
TreeNode ret1 = find(root.left,val);
if(ret1 != null) {
return ret1;//不去右边了
}
TreeNode ret2 = find(root.right,val);
if(ret2 != null) {
return ret2;
}
return null;
}
层序遍历
void levelOrder(TreeNode root) {
if(root == null) {
return;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode cur = queue.poll();
System.out.print(cur.val+" ");
if(cur.left != null) {
queue.offer(cur.left);
}
if(cur.right != null) {
queue.offer(cur.right);
}
}
}
判断一棵树是不是完全二叉树
boolean isCompleteTree(TreeNode root) {
if(root == null) {
return true;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode cur = queue.poll();
if(cur != null) {
queue.offer(cur.left);
queue.offer(cur.right);
}else {
break;//结束这个循环
}
}
//需要判断队列当中 是否有非空的元素
while (!queue.isEmpty()) {
//一个元素 一个元素 出队来判断 是不是空
TreeNode tmp = queue.peek();
if(tmp == null) {
queue.poll();
}else {
return false;
}
}
return true;
}