基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)

安全帽检测系统用于自动化监测安全帽佩戴情况,在需要佩戴安全帽的场合自动安全提醒,实现图片、视频和摄像头等多种形式监测。在介绍算法原理的同时,给出P y t h o n的实现代码、训练数据集,以及P y Q t的UI界面。

安全帽检测系统主要用于自动化监测安全帽佩戴情况,检测佩戴安全帽的数目、位置、预测置信度等;可采取图片、视频和摄像头等多种形式监测佩戴情况,并实时显示标记和结果;博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。


有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取
基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第1张图片

前言

近年来,随着计算机视觉的飞速发展,越来越多的目标检测算法被应用到生活中,对人体安全的研究尤为有价值。建筑业是劳动密集型行业,工作环境复杂,安全事故频发。据《国家统计年鉴》统计,我国建筑业每年发生的事故数量高达600起,每年死亡人数超过700人。坠落的物体是最致命的,研究表明,所有建筑工人因脑外伤而死亡的人数中有24%是由高空物体坠落造成的。由于它直接威胁到工人的头部,而头部是最重要的身体部位,因此头盔佩戴检测在现实生活场景中具有重要意义。

计算机视觉的快速发展应用在各个方面,具有广阔的前景,尤其是在安全工程方面。在建筑工地,头盔是保护工人生命的重要工具,而实际上,由于没有戴头盔,事故时有发生。为了解决这个问题,基于深度学习的安全帽检测系统以最及时的方式进行告警,同时最大限度降低误报和漏报现象,极大的节约了生产成本,提高了工作效率。

这里给出博主设计的软件界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第2张图片

检测安全帽时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个目标,也可开启摄像头或视频检测:

详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示

首先我们还是通过动图看一下识别安全帽的效果,系统主要实现的功能是对图片、视频和摄像头画面中的安全帽属性进行识别,识别的结果可视化显示在界面和图像中,另外提供多个安全帽的显示选择功能,演示效果如下。

(一)用户注册登录界面

这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个头盔的LOGO图,右侧输入账号、密码、验证码等等。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第3张图片

(二)安全帽图片识别

系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有安全帽识别的结果,可通过下拉选框查看单个安全帽检测的结果。本功能的界面展示如下图所示:

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第4张图片

(三)安全帽视频识别效果展示

很多时候我们需要识别一段视频,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别安全帽佩戴情况,并将结果记录在右下角表格中,效果如下图所示:

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第5张图片

(四)摄像头检测效果展示

在真实场景中,我们往往利用设备摄像头获取实时画面,同时需要对画面中是否佩戴安全帽进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的安全帽,识别结果展示如下图:

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第6张图片


2. 检测模型与训练

管理人员可以直接了解工人是否正确、安全佩戴头盔的信息,及时采取措施,避免不必要的损失。本文的系统采用了基于YOLOV5的安全帽检测与识别的方法,头盔上的测试结果达到了95.2%,基于此的预警功能可以帮助减少工地事故的危害。本文借助YoloV5算法,实现安全帽检测识别,这里首先对实现原理进行介绍。

(一)原理简介

前文已经介绍过YoloV5中的Backbone结构,Backbone可以被称作YoloV5的主干特征提取网络,根据它的结构以及之前Yolo主干的叫法,我一般叫它CSPDarknet,输入的图片首先会在CSPDarknet里面进行特征提取,提取到的特征可以被称作特征层,是输入图片的特征集合。在主干部分,我们获取了三个特征层进行下一步网络的构建,这三个特征层我称它为有效特征层。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第7张图片

FPN可以被称作YoloV5的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV5里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第8张图片

Yolo Head是YOLOv5的分类器与回归器,通过CSPDarknet和FPN,我们已经可以获得三个加强过的有效特征层。每一个特征层都有宽、高和通道数,此时我们可以将特征图看作一个又一个特征点的集合,每一个特征点都有通道数个特征。Yolo Head实际上所做的工作就是对特征点进行判断,判断特征点是否有物体与其对应。与以前版本的Yolo一样,YoloV5所用的解耦头是一起的,也就是分类和回归在一个1X1卷积里实现。

**

python

# YOLOv5 neck and head
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

利用以上网络进行训练,所有层中的权重均采用标准偏差为0.01,均值为0的高斯随机值初始化。训练时不使用预训练模型,不使用基准可用的图像和标签之外的任何数据,网络从头开始进行训练。训练的目标值用与真实类别相对应的稀疏二进制向量表示。

(二)安全帽数据集与训练过程

这里我们使用的安全帽识别数据集,包含训练集910张图片,验证集304张图片,共计1214张图片。部分数据集图片及其标注信息如下图所示。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第9张图片

每张图像均提供了图像类标记信息,图像中安全帽的bounding box,安全帽的关键part信息,以及安全帽的属性信息,数据集并解压后得到如下的图片。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第10张图片

在python环境配置完成后,我们运行train.py进行训练。YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),下图为博主训练安全帽识别的模型训练曲线图。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第11张图片

我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第12张图片

以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.910。

3. 安全帽检测识别

在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

**

python

def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)

    return pred, InferNms

得到预测结果我们便可以将帧图像中的安全帽框出,然后在图片上用opencv绘图操作,输出安全帽的类别及安全帽的预测分数。以下是读取一个安全帽图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

**

python

if __name__ == '__main__':
    # video_path = 0
    video_path = "UI_rec/test_/test.mp4"
    # 初始化视频流
    vs = cv2.VideoCapture(video_path)
    (W, H) = (None, None)
    frameIndex = 0  # 视频帧数

    try:
        prop = cv2.CAP_PROP_FRAME_COUNT
        total = int(vs.get(prop))
        # print("[INFO] 视频总帧数:{}".format(total))
    # 若读取失败,报错退出
    except:
        print("[INFO] could not determine # of frames in video")
        print("[INFO] no approx. completion time can be provided")
        total = -1

    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    ret, frame = vs.read()
    vw = frame.shape[1]
    vh = frame.shape[0]
    print("[INFO] 视频尺寸:{} * {}".format(vw, vh))
    output_video = cv2.VideoWriter("./results.avi", fourcc, 20.0, (vw, vh))  # 处理后的视频对象

    # 遍历视频帧进行检测
    while True:
        # 从视频文件中逐帧读取画面
        (grabbed, image) = vs.read()
        # 若grabbed为空,表示视频到达最后一帧,退出
        if not grabbed:
            print("[INFO] 运行结束...")
            output_video.release()
            vs.release()
            exit()
        # 获取画面长宽
        if W is None or H is None:
            (H, W) = image.shape[:2]
        image = cv2.resize(image, (850, 500))
        img0 = image.copy()
        img = letterbox(img0, new_shape=imgsz)[0]
        img = np.stack(img, 0)
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        pred, useTime = predict(img)

        det = pred[0]
        p, s, im0 = None, '', img0
        if det is not None and len(det):  # 如果有检测信息则进入
            det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
            number_i = 0  # 类别预编号
            detInfo = []
            for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
                c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
                # 将检测信息添加到字典中
                detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
                number_i += 1  # 编号数+1

                label = '%s %.2f' % (names[int(cls)], conf)

                # 画出检测到的目标物
                plot_one_box(image, xyxy, label=label, color=colors[int(cls)])

        # 实时显示检测画面
        cv2.imshow('Stream', image)
        image = cv2.resize(image, (vw, vh))
        output_video.write(image)  # 保存标记后的视频
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

        # print("FPS:{}".format(int(0.6/(end-start))))
        frameIndex += 1

执行得到的结果如下图所示,图中安全帽的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第13张图片

博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境)。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第14张图片


下载链接

若您想获得博文中涉及的实现完整全部程序文件(包括测试图片、视频,py, UI文件等,如下图),这里已打包上传至博主的面包多平台,见可参考博客与视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第15张图片

在文件夹下的资源显示如下,下面的链接中也给出了Python的离线依赖包,读者可在正确安装Anaconda和Pycharm软件后,复制离线依赖包至项目目录下进行安装,离线依赖的使用详细演示也可见本人B站视频:win11从头安装软件和配置环境运行深度学习项目、Win10中使用pycharm和anaconda进行python环境配置教程。

基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第16张图片

注意:该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为runMain.py和LoginUI.py,测试图片脚本可运行testPicture.py,测试视频脚本可运行testVideo.py。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,请勿使用其他版本,详见requirements.txt文件;

完整资源中包含数据集及训练代码,环境配置与界面中文字、图片、logo等的修改方法请见视频,项目完整文件下载请见以下链接处给出:➷➷➷

完整代码下载: https://mbd.pub/o/bread/ZJaXlJpr

参考视频演示: https://www.bilibili.com/video/BV1fb411f7u1/

离线依赖库下载:https://pan.baidu.com/s/1hW9z9ofV1FRSezTSj59JSg?pwd=oy4n (提取码:oy4n )


界面中文字、图标和背景图修改方法:

在Qt Designer中可以彻底修改界面的各个控件及设置,然后将ui文件转换为py文件即可调用和显示界面。如果只需要修改界面中的文字、图标和背景图的,可以直接在ConfigUI.config文件中修改,步骤如下:
(1)打开UI_rec/tools/ConfigUI.config文件,若乱码请选择GBK编码打开。
(2)如需修改界面文字,只要选中要改的字符替换成自己的就好。
(3)如需修改背景、图标等,只需修改图片的路径。例如,原文件中的背景图设置如下:

**

powershell

mainWindow = :/images/icons/back-image.png

可修改为自己的名为background2.png图片(位置在UI_rec/icons/文件夹中),可将该项设置如下即可修改背景图:

**

powershell

mainWindow = ./icons/background2.png

结束语

由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。

最后

为了帮助大家更好的学习人工智能,这里给大家准备了一份人工智能入门/进阶学习资料,里面的内容都是适合学习的笔记和资料,不懂编程也能听懂、看懂,所有资料朋友们如果有需要全套人工智能入门+进阶学习资源包,可以在评论区或扫.码领取哦)~

在线教程

  • 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程
  • 人工智能入门 – 人工智能基础学习。Peter Norvig举办的课程
  • EdX 人工智能 – 此课程讲授人工智能计算机系统设计的基本概念和技术。
  • 人工智能中的计划 – 计划是人工智能系统的基础部分之一。在这个课程中,你将会学习到让机器人执行一系列动作所需要的基本算法。
  • 机器人人工智能 – 这个课程将会教授你实现人工智能的基本方法,包括:概率推算,计划和搜索,本地化,跟踪和控制,全部都是围绕有关机器人设计。
  • 机器学习 – 有指导和无指导情况下的基本机器学习算法
  • 机器学习中的神经网络 – 智能神经网络上的算法和实践经验
  • 斯坦福统计学习

有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取
基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第17张图片
请添加图片描述

人工智能书籍

  • OpenCV(中文版).(布拉德斯基等)
  • OpenCV+3计算机视觉++Python语言实现+第二版
  • OpenCV3编程入门 毛星云编著
  • 数字图像处理_第三版
  • 人工智能:一种现代的方法
  • 深度学习面试宝典
  • 深度学习之PyTorch物体检测实战
  • 吴恩达DeepLearning.ai中文版笔记
  • 计算机视觉中的多视图几何
  • PyTorch-官方推荐教程-英文版
  • 《神经网络与深度学习》(邱锡鹏-20191121)

  • 在这里插入图片描述
    有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取
    基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第18张图片

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

第三阶段:工作应用

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

在这里插入图片描述
有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取
基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)_第19张图片

你可能感兴趣的:(深度学习,YOLO,python,人工智能,神经网络,tensorflow,开发语言)