JDK8,又称为JDK 1.8,是Java语言开发的里程碑版本。这个版本引入了众多令人兴奋的新特性,让Java更加灵活和强大。其中,最引人注目的新特性包括Lambda表达式、方法引用、默认方法、Stream API、新的日期和时间API以及Optional类等。这些新特性不仅简化了代码,提高了开发效率,还为Java带来了真正的函数式编程风格。总之,JDK8让Java焕发出了新的活力,为开发者提供了更多的可能性。
//查询未成年作家的评分在70以上的书籍 由于洋流影响所以作家和书籍可能出现重复,需要进行去重
List bookList = new ArrayList<>();
Set uniqueBookValues = new HashSet<>();
Set uniqueAuthorValues = new HashSet<>();
for (Author author : authors) {
if (uniqueAuthorValues.add(author)) {
if (author.getAge() < 18) {
List books = author.getBooks();
for (Book book : books) {
if (book.getScore() > 70) {
if (uniqueBookValues.add(book)) {
bookList.add(book);
}
}
}
}
}
}
System.out.println(bookList);
List collect = authors.stream()
.distinct()
.filter(author -> author.getAge() < 18)
.map(author -> author.getBooks())
.flatMap(Collection::stream)
.filter(book -> book.getScore() > 70)
.distinct()
.collect(Collectors.toList());
System.out.println(collect);
面向对象思想需要关注用什么对象完成什么事情。而函数式编程思想就类似于我们数学中的函数。它主要关注的是对数据进行了什么操作。
Lambda是JDK8中一个语法糖。他可以对某些匿名内部类的写法进行简化。它是函数式编程思想的一个重要体现。让我们不用关注是什么对象。而是更关注我们对数据进行了什么操作。
可推导可省略
示例一:
我们在创建线程并启动时可以使用匿名内部类的写法:
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("你知道吗 我比你想象的 更想在你身边");
}
}).start();
可以使用Lambda的格式对其进行修改。修改后如下:
new Thread(()->{
System.out.println("你知道吗 我比你想象的 更想在你身边");
}).start();
示例二:
现有方法定义如下,其中IntBinaryOperator是一个接口。先使用匿名内部类的写法调用该方法。
public static int calculateNum(IntBinaryOperator operator){
int a = 10;
int b = 20;
return operator.applyAsInt(a, b);
}
public static void main(String[] args) {
int i = calculateNum(new IntBinaryOperator() {
@Override
public int applyAsInt(int left, int right) {
return left + right;
}
});
System.out.println(i);
}
Lambda写法:
public static void main(String[] args) {
int i = calculateNum((int left, int right)->{
return left + right;
});
System.out.println(i);
}
示例三:
现有方法定义如下,其中IntPredicate是一个接口。先使用匿名内部类的写法调用该方法。
public static void printNum(IntPredicate predicate){
int[] arr = {1,2,3,4,5,6,7,8,9,10};
for (int i : arr) {
if(predicate.test(i)){
System.out.println(i);
}
}
}
public static void main(String[] args) {
printNum(new IntPredicate() {
@Override
public boolean test(int value) {
return value%2==0;
}
});
}
Lambda写法:
public static void main(String[] args) {
printNum((int value)-> {
return value%2==0;
});
}
public static void printNum(IntPredicate predicate){
int[] arr = {1,2,3,4,5,6,7,8,9,10};
for (int i : arr) {
if(predicate.test(i)){
System.out.println(i);
}
}
}
Java8的Stream使用的是函数式编程模式,如同它的名字一样,它可以被用来对集合或数组进行链状流式的操作。可以更方便的让我们对集合或数组操作。
org.projectlombok
lombok
1.18.16
@Data
@NoArgsConstructor
@AllArgsConstructor
@EqualsAndHashCode//用于后期的去重使用
public class Author {
//id
private Long id;
//姓名
private String name;
//年龄
private Integer age;
//简介
private String intro;
//作品
private List books;
}
@Data
@AllArgsConstructor
@NoArgsConstructor
@EqualsAndHashCode//用于后期的去重使用
public class Book {
//id
private Long id;
//书名
private String name;
//分类
private String category;
//评分
private Integer score;
//简介
private String intro;
}
private static List getAuthors() {
//数据初始化
Author author = new Author(1L,"蒙多",33,"一个从菜刀中明悟哲理的祖安人",null);
Author author2 = new Author(2L,"亚拉索",15,"狂风也追逐不上他的思考速度",null);
Author author3 = new Author(3L,"易",14,"是这个世界在限制他的思维",null);
Author author4 = new Author(3L,"易",14,"是这个世界在限制他的思维",null);
//书籍列表
List books1 = new ArrayList<>();
List books2 = new ArrayList<>();
List books3 = new ArrayList<>();
books1.add(new Book(1L,"刀的两侧是光明与黑暗","哲学,爱情",88,"用一把刀划分了爱恨"));
books1.add(new Book(2L,"一个人不能死在同一把刀下","个人成长,爱情",99,"讲述如何从失败中明悟真理"));
books2.add(new Book(3L,"那风吹不到的地方","哲学",85,"带你用思维去领略世界的尽头"));
books2.add(new Book(3L,"那风吹不到的地方","哲学",85,"带你用思维去领略世界的尽头"));
books2.add(new Book(4L,"吹或不吹","爱情,个人传记",56,"一个哲学家的恋爱观注定很难把他所在的时代理解"));
books3.add(new Book(5L,"你的剑就是我的剑","爱情",56,"无法想象一个武者能对他的伴侣这么的宽容"));
books3.add(new Book(6L,"风与剑","个人传记",100,"两个哲学家灵魂和肉体的碰撞会激起怎么样的火花呢?"));
books3.add(new Book(6L,"风与剑","个人传记",100,"两个哲学家灵魂和肉体的碰撞会激起怎么样的火花呢?"));
author.setBooks(books1);
author2.setBooks(books2);
author3.setBooks(books3);
author4.setBooks(books3);
List authorList = new ArrayList<>(Arrays.asList(author,author2,author3,author4));
return authorList;
}
我们可以调用getAuthors方法获取到作家的集合。现在需要打印所有年龄小于18的作家的名字,并且要注意去重。
2.1.1实现
//打印所有年龄小于18的作家的名字,并且要注意去重
List authors = getAuthors();
authors.
stream()//把集合转换成流
.distinct()//先去除重复的作家
.filter(author -> author.getAge()<18)//筛选年龄小于18的
.forEach(author -> System.out.println(author.getName()));//遍历打印名字
单列集合: 集合对象.stream()
List authors = getAuthors();
Stream stream = authors.stream();
数组:Arrays.stream(数组) 或者使用Stream.of来创建
Integer[] arr = {1,2,3,4,5};
Stream stream = Arrays.stream(arr);
Stream stream2 = Stream.of(arr);
双列集合:转换成单列集合后再创建
Map map = new HashMap<>();
map.put("蜡笔小新",19);
map.put("黑子",17);
map.put("日向翔阳",16);
Stream> stream = map.entrySet().stream();
filter
可以对流中的元素进行条件过滤,符合过滤条件的才能继续留在流中。
例如:
打印所有姓名长度大于1的作家的姓名
List authors = getAuthors();
authors.stream()
.filter(author -> author.getName().length()>1)
.forEach(author -> System.out.println(author.getName()));
map
可以把对流中的元素进行计算或转换。
例如:
打印所有作家的姓名
List authors = getAuthors();
authors
.stream()
.map(author -> author.getName())
.forEach(name->System.out.println(name));
Copy
// 打印所有作家的姓名
List authors = getAuthors();
// authors.stream()
// .map(author -> author.getName())
// .forEach(s -> System.out.println(s));
authors.stream()
.map(author -> author.getAge())
.map(age->age+10)
.forEach(age-> System.out.println(age));
distinct
可以去除流中的重复元素。
例如:
打印所有作家的姓名,并且要求其中不能有重复元素。
List authors = getAuthors();
authors.stream()
.distinct()
.forEach(author -> System.out.println(author.getName()));
sorted
可以对流中的元素进行排序。
例如:
对流中的元素按照年龄进行降序排序,并且要求不能有重复的元素。
List authors = getAuthors();
// 对流中的元素按照年龄进行降序排序,并且要求不能有重复的元素。
authors.stream()
.distinct()
.sorted()
.forEach(author -> System.out.println(author.getAge()));
List authors = getAuthors();
// 对流中的元素按照年龄进行降序排序,并且要求不能有重复的元素。
authors.stream()
.distinct()
.sorted((o1, o2) -> o2.getAge()-o1.getAge())
.forEach(author -> System.out.println(author.getAge()));
limit
可以设置流的最大长度,超出的部分将被抛弃。
例如:
对流中的元素按照年龄进行降序排序,并且要求不能有重复的元素,然后打印其中年龄最大的两个作家的姓名。
List authors = getAuthors();
authors.stream()
.distinct()
.sorted()
.limit(2)
.forEach(author -> System.out.println(author.getName()));
skip
跳过流中的前n个元素,返回剩下的元素
例如:
打印除了年龄最大的作家外的其他作家,要求不能有重复元素,并且按照年龄降序排序。
// 打印除了年龄最大的作家外的其他作家,要求不能有重复元素,并且按照年龄降序排序。
List authors = getAuthors();
authors.stream()
.distinct()
.sorted()
.skip(1)
.forEach(author -> System.out.println(author.getName()));
flatMap
map只能把一个对象转换成另一个对象来作为流中的元素。而flatMap可以把一个对象转换成多个对象作为流中的元素。
例一:
打印所有书籍的名字。要求对重复的元素进行去重。
// 打印所有书籍的名字。要求对重复的元素进行去重。
List authors = getAuthors();
authors.stream()
.flatMap(author -> author.getBooks().stream())
.distinct()
.forEach(book -> System.out.println(book.getName()));
例二:
打印现有数据的所有分类。要求对分类进行去重。不能出现这种格式:哲学,爱情
// 打印现有数据的所有分类。要求对分类进行去重。不能出现这种格式:哲学,爱情 爱情
List authors = getAuthors();
authors.stream()
.flatMap(author -> author.getBooks().stream())
.distinct()
.flatMap(book -> Arrays.stream(book.getCategory().split(",")))
.distinct()
.forEach(category-> System.out.println(category));
forEach
对流中的元素进行遍历操作,我们通过传入的参数去指定对遍历到的元素进行什么具体操作。
例子:
输出所有作家的名字
// 输出所有作家的名字
List authors = getAuthors();
authors.stream()
.map(author -> author.getName())
.distinct()
.forEach(name-> System.out.println(name));
count
可以用来获取当前流中元素的个数。
例子:
打印这些作家的所出书籍的数目,注意删除重复元素。
// 打印这些作家的所出书籍的数目,注意删除重复元素。
List authors = getAuthors();
long count = authors.stream()
.flatMap(author -> author.getBooks().stream())
.distinct()
.count();
System.out.println(count);
max&min
可以用来或者流中的最值。
例子:
分别获取这些作家的所出书籍的最高分和最低分并打印。
// 分别获取这些作家的所出书籍的最高分和最低分并打印。
//Stream -> Stream ->Stream ->求值
List authors = getAuthors();
Optional max = authors.stream()
.flatMap(author -> author.getBooks().stream())
.map(book -> book.getScore())
.max((score1, score2) -> score1 - score2);
Optional min = authors.stream()
.flatMap(author -> author.getBooks().stream())
.map(book -> book.getScore())
.min((score1, score2) -> score1 - score2);
System.out.println(max.get());
System.out.println(min.get());
collect
把当前流转换成一个集合。
例子:
获取一个存放所有作者名字的List集合。
// 获取一个存放所有作者名字的List集合。
List authors = getAuthors();
List nameList = authors.stream()
.map(author -> author.getName())
.collect(Collectors.toList());
System.out.println(nameList);
获取一个所有书名的Set集合。
// 获取一个所有书名的Set集合。
List authors = getAuthors();
Set books = authors.stream()
.flatMap(author -> author.getBooks().stream())
.collect(Collectors.toSet());
System.out.println(books);
获取一个Map集合,map的key为作者名,value为List
// 获取一个Map集合,map的key为作者名,value为List
List authors = getAuthors();
Map> map = authors.stream()
.distinct()
.collect(Collectors.toMap(author -> author.getName(), author -> author.getBooks()));
System.out.println(map);
anyMatch
可以用来判断是否有任意符合匹配条件的元素,结果为boolean类型。
例子:
判断是否有年龄在29以上的作家
// 判断是否有年龄在29以上的作家
List authors = getAuthors();
boolean flag = authors.stream()
.anyMatch(author -> author.getAge() > 29);
System.out.println(flag);
allMatch
可以用来判断是否都符合匹配条件,结果为boolean类型。如果都符合结果为true,否则结果为false。
例子:
判断是否所有的作家都是成年人
// 判断是否所有的作家都是成年人
List authors = getAuthors();
boolean flag = authors.stream()
.allMatch(author -> author.getAge() >= 18);
System.out.println(flag);
noneMatch
可以判断流中的元素是否都不符合匹配条件。如果都不符合结果为true,否则结果为false
例子:
判断作家是否都没有超过100岁的。
// 判断作家是否都没有超过100岁的。
List authors = getAuthors();
boolean b = authors.stream()
.noneMatch(author -> author.getAge() > 100);
System.out.println(b);
findAny
获取流中的任意一个元素。该方法没有办法保证获取的一定是流中的第一个元素。
例子:
获取任意一个年龄大于18的作家,如果存在就输出他的名字
// 获取任意一个年龄大于18的作家,如果存在就输出他的名字
List authors = getAuthors();
Optional optionalAuthor = authors.stream()
.filter(author -> author.getAge()>18)
.findAny();
optionalAuthor.ifPresent(author -> System.out.println(author.getName()));
findFirst
获取流中的第一个元素。
例子:
获取一个年龄最小的作家,并输出他的姓名。
// 获取一个年龄最小的作家,并输出他的姓名。
List authors = getAuthors();
Optional first = authors.stream()
.sorted((o1, o2) -> o1.getAge() - o2.getAge())
.findFirst();
first.ifPresent(author -> System.out.println(author.getName()));
对流中的数据按照你指定的计算方式计算出一个结果。(缩减操作)
reduce的作用是把stream中的元素给组合起来,我们可以传入一个初始值,它会按照我们的计算方式依次拿流中的元素和初始化值进行计算,计算结果再和后面的元素计算。
reduce两个参数的重载形式内部的计算方式如下:
T result = identity;
for (T element : this stream)
result = accumulator.apply(result, element)
return result;
其中identity就是我们可以通过方法参数传入的初始值,accumulator的apply具体进行什么计算也是我们通过方法参数来确定的。
例子:
使用reduce求所有作者年龄的和
// 使用reduce求所有作者年龄的和
List authors = getAuthors();
Integer sum = authors.stream()
.distinct()
.map(author -> author.getAge())
.reduce(0, (result, element) -> result + element);
System.out.println(sum);
使用reduce求所有作者中年龄的最大值
// 使用reduce求所有作者中年龄的最大值
List authors = getAuthors();
Integer max = authors.stream()
.map(author -> author.getAge())
.reduce(Integer.MIN_VALUE, (result, element) -> result < element ? element : result);
System.out.println(max);
使用reduce求所有作者中年龄的最小值
// 使用reduce求所有作者中年龄的最小值
List authors = getAuthors();
Integer min = authors.stream()
.map(author -> author.getAge())
.reduce(Integer.MAX_VALUE, (result, element) -> result > element ? element : result);
System.out.println(min);
reduce一个参数的重载形式内部的计算
boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;
}
else
result = accumulator.apply(result, element);
}
return foundAny ? Optional.of(result) : Optional.empty();
如果用一个参数的重载方法去求最小值代码如下:
// 使用reduce求所有作者中年龄的最小值
List authors = getAuthors();
Optional minOptional = authors.stream()
.map(author -> author.getAge())
.reduce((result, element) -> result > element ? element : result);
minOptional.ifPresent(age-> System.out.println(age));
本章讲解了Lambda表达式和Stream流 的使用,后面在继续更新jdk8新特性的更多使用的骚操作,如Optional、 函数式接口、方法引用、新日期特性、还有更多的高级玩法。希望大家多多支持哦~