学习小组Day6笔记-青青

R包--dplyr为例

安装与加载

  1. 镜像设置
    Tools>Global options>Pakages>CRAN
    options()$repos检查镜像网站
    options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
    options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
  2. 安装
    install.packages(“dplyr”)/BiocManager::install(“dplyr”)
    出现问题:重新设置镜像;不存在叫‘pillar’这个名字的程辑包:下载pillar
  3. 加载
    library(包)
    require(包)
  4. 示例数据
    test <- iris[c(1:2,51:52,101:102),]

dplyr五个基础函数

  1. mutate(),新增列
    mutate(test, new = Sepal.Length * Sepal.Width)
  2. select(),按列筛选
    (1) 按列号
    select(test,1)
    select(test,c(1,5))
    select(test,Sepal.Length)
    (2) 按列名
    select(test, Petal.Length, Petal.Width)
    vars <- c("Petal.Length", "Petal.Width")
    select(test, one_of(vars))
  3. filter(),筛选行
    filter(test, Species == "setosa")
    filter(test, Species == "setosa"&Sepal.Length > 5 )
    filter(test, Species %in% c("setosa","versicolor"))
  4. arrange(),按某1列或几列对表格排序
    (1) 默认从小到大排序
    arrange(test, Sepal.Length)
    (2) 用desc从大到小
    arrange(test, desc(Sepal.Length))
  5. summarise(),汇总
    结合group_by更好
    (1) 计算Sepal.Length的平均值和标准差
    summarise(test, mean(Sepal.Length), sd(Sepal.Length))
    (2) 先按Species分组,再进行计算上述
    group_by(test, Species)
    summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

dplyr实用技能

  1. 管道操作 %>% (cmd/ctr + shift + M)
    tidyverse包的加载
    test %>%
    group_by(Species) %>%
    summarise(mean(Sepal.Length), sd(Sepal.Length))
  2. count统计某列unique值
    count(test,Species)

dplyr处理关系数据

连接两个表,不要引入factor
options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), z = c("A","B","C",'D'),stringsAsFactors = F)
test2 <- data.frame(x = c('a','b','c','d','e','f'), y = c(1,2,3,4,5,6),stringsAsFactors = F)

  1. 內连inner_join--取交集
    inner_join(test1, test2, by = "x")
  2. 左连left_join
    left_join(test1, test2, by = 'x')
    left_join(test2, test1, by = 'x')
  3. 全连full_join
    full_join( test1, test2, by = 'x')
  4. 半连接
    返回与y表匹配的x表的记录
    semi_join(x = test1, y = test2, by = 'x')
  5. 反连接
    返回无法与y表匹配的x表的记录
    anti_join(x = test2, y = test1, by = 'x')
  6. 简单合并
    bind_rows() --列数相同
    bind_cols() --行数相同
    test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
    test2 <- data.frame(x = c(5,6), y = c(50,60))
    test3 <- data.frame(z = c(100,200,300,400))
    bind_rows(test1, test2)
    bind_cols(test1, test3)

你可能感兴趣的:(学习小组Day6笔记-青青)