C++ opengl 绘制立方体,使用点光源,平行光,聚光等

关于光

一个物体最后显示出来的颜色,也就是我们在片段着色器中最后混合出来的FragColor
环境光、漫反射光、镜面光这三种光是由材料和光照的对应的三种成分组成的,材料在贴图时它是纹理。
所以我们在模拟点光源,模拟聚光灯的时候,都可以通过更改光照的这三种属性来达到类似的效果。

opengl_color_light_picture.cpp

#include 
#include 

#include "glad/glad.h"
#include "GLFW/glfw3.h"
#include "utils/Shader.h"
//图片工具库
#include "utils/stb_image.h"

//矩阵工具库
#include "utils/glm/glm.hpp"
#include "utils/glm/gtc/matrix_transform.hpp"
#include "utils/glm/gtc/type_ptr.hpp"
#include "utils/Camera.h"

void framebuffer_size_callback(GLFWwindow *window, int width, int height);

void processInput(GLFWwindow *window);

void loadTexture(unsigned int *texture, const char *path);

unsigned int loadTextureReal(char const *path);

void mouse_callback(GLFWwindow *window, double xpos, double ypos);

void scroll_callback(GLFWwindow *window, double xoffset, double yoffset);


glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);//相机位置
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);//面对的方向,以这个为尺度更改观看的,其实就是单位速度
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);//头顶的方向

float deltaTime = 0.0f; //当前帧与上一帧的时间差
float lastFrameTime = 0.0f;//上一帧的时间

float lastX = 300;
float lastY = 300;


Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);


/**
 * 顶点数组对象:Vertex Array Object,VAO
 * 顶点缓冲对象:Vertex Buffer Object,VBO
 * 索引缓冲对象:Element Buffer Object,EBO或Index Buffer Object,IBO
 * @return
 */
int main() {
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GLFW_OPENGL_CORE_PROFILE);

    //第三个参数是标题
    GLFWwindow *window = glfwCreateWindow(600, 600, "LearnOpengl", NULL, NULL);
    if (window == NULL) {
        std::cout << "Fail to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    //奇特的写法,本应是个函数,写出来却像个变量,连参数都不需要传了
    if (!gladLoadGLLoader((GLADloadproc) glfwGetProcAddress)) {
        std::cout << "File to initialize GLAD" << std::endl;
        return -1;
    }
    //使窗口隐藏光标并且捕捉它
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
    //使用回调
    glfwSetCursorPosCallback(window, mouse_callback);

    glViewport(0, 0, 600, 600);//指定视口大小,跟java一样
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetScrollCallback(window, scroll_callback);

    //加载纹理
    unsigned int diffuseMap, diffuse_specular_Map, matrixMap;
    const char *path1 = "D:\\cl_workspace\\TestOpengl\\resource\\container2.jpg";
    const char *path2 = "D:\\cl_workspace\\TestOpengl\\resource\\container2_specular.png";
    const char *path3 = "D:\\cl_workspace\\TestOpengl\\resource\\matrix.jpg";
//    //两个都要传递引用,这样函数更改的值才是上面的值
//    loadTexture(&diffuseMap, path1);
//    loadTexture(&diffuse_specular_Map, path2);
//    loadTexture(&matrixMap, path3);
    diffuseMap = loadTextureReal(path1);
    diffuse_specular_Map = loadTextureReal(path2);
    matrixMap = loadTextureReal(path3);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, diffuseMap);
    glActiveTexture(GL_TEXTURE1);
    glBindTexture(GL_TEXTURE_2D, diffuse_specular_Map);
    glActiveTexture(GL_TEXTURE2);
    glBindTexture(GL_TEXTURE_2D, matrixMap);


    //箱子
    Shader lightingShader("D:\\cl_workspace\\TestOpengl\\shader\\vertex_shader_6.glsl",
                          "D:\\cl_workspace\\TestOpengl\\shader\\fragment_shader_6.glsl");
    //光源
    Shader lampShader("D:\\cl_workspace\\TestOpengl\\shader\\vertex_shader_4.glsl",
                      "D:\\cl_workspace\\TestOpengl\\shader\\fragment_shader_4.glsl");


    //立方体
    float vertices[] = {
            // positions          // normals           // texture coords
            -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
            0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
            0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
            0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
            -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
            -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,

            -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
            0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
            0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
            0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
            -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
            -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,

            -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
            -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
            -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
            -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
            -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
            -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,

            0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
            0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
            0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
            0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
            0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
            0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,

            -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
            0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
            0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
            0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
            -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
            -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,

            -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
            0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
            0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
            0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
            -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
            -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
    };

    glm::vec3 cubePositions[] = {
            glm::vec3(0.0f, 0.0f, 0.0f),
            glm::vec3(2.0f, 5.0f, -15.0f),
            glm::vec3(-1.5f, -2.2f, -2.5f),
            glm::vec3(-3.8f, -2.0f, -12.3f),
            glm::vec3(2.4f, -0.4f, -3.5f),
            glm::vec3(-1.7f, 3.0f, -7.5f),
            glm::vec3(1.3f, -2.0f, -2.5f),
            glm::vec3(1.5f, 2.0f, -2.5f),
            glm::vec3(1.5f, 0.2f, -1.5f),
            glm::vec3(-1.3f, 1.0f, -1.5f)
    };

    //创建VBO,绑定数据,绑定VAO
    //明白了,VBO顶点缓冲区,是用来存放数据的,而VAO是调用数据的索引
    unsigned int cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glBindVertexArray(cubeVAO);

    unsigned int VBO;
    glGenBuffers(1, &VBO);//&符号应该是传引用对象的意思,不然会传值进去
    glBindBuffer(GL_ARRAY_BUFFER, VBO);//这一步就是给GL_ARRAY_BUFFER绑定数据了
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    //做的时间长,反而忘了。。。这是给着色器里面的某个location设置值的
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (0));
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (3 * sizeof(float)));
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (6 * sizeof(float)));
    glEnableVertexAttribArray(2);


    //当调用glBindVertexArray(lightVAO)后,再调用glBindBuffer(GL_ARRAY_BUFFER, VBO)
    //相当于把缓冲区中的数据设置给了lightVAO,上面的顺序一定不能变
    unsigned int lightVAO;
    glGenVertexArrays(1, &lightVAO);
    glBindVertexArray(lightVAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (0));
    glEnableVertexAttribArray(0);

    //循环绘制
    while (!glfwWindowShouldClose(window)) {//判断界面是否关闭,没关闭就循环绘制
        processInput(window);

        //记录deltaTime
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrameTime;
        lastFrameTime = currentFrame;


        //同java
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//如果开启了深度测试,这里就要把GL_DEPTH_BUFFER_BIT也清空

        //让光源随着时间的变化而改变位置
//        lightPos = glm::vec3(1.2f * sin(glfwGetTime()), 1.0f * sin(glfwGetTime()), 2.0f);

        glm::vec3 lightColor;
        lightColor.x = sin(glfwGetTime() * 2.0f);
        lightColor.y = sin(glfwGetTime() * 0.7f);
        lightColor.z = sin(glfwGetTime() * 1.3f);

        glm::vec3 diffuseColor = lightColor * glm::vec3(0.5f);//降低影响
        glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f);//环境光,更低
        //开启深度测试
        glEnable(GL_DEPTH_TEST);

        //lighting其实是物体。。。
        lightingShader.use();
        lightingShader.setVec3("viewPos", camera.Position);//观察位置

        //设置各个光照的强度
//        lightingShader.setVec3("light.ambient", ambientColor);
//        lightingShader.setVec3("light.diffuse", diffuseColor);
        lightingShader.setVec3("light.ambient", 0.1f, 0.1f, 0.1f);
        lightingShader.setVec3("light.diffuse", 0.8f, 0.8f, 0.8f);
        lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);//镜面反射
//        lightingShader.setVec3("light.direction", -0.2f, -1.0f, -0.3f);//定向光
//        lightingShader.setVec3("light.position", lightPos);//点光源位置
        //聚光灯
        lightingShader.setVec3("light.position",  camera.Position);//摄像机位置就是光源的来源
        lightingShader.setVec3("light.direction",camera.Front);//聚光灯正前方
        lightingShader.setFloat("light.cutoff", glm::cos(glm::radians(12.5f)));//聚光灯的切光角
        lightingShader.setFloat("light.outerCutOff", glm::cos(glm::radians(17.5f)));//聚光灯的切光角

        //光的衰减参数
//        lightingShader.setFloat("light.constant", 1.0f);
//        lightingShader.setFloat("light.linear", 0.09f);
//        lightingShader.setFloat("light.quadratic", 0.032f);


        lightingShader.setInt("material.diffuse", 0);//绑定纹理?用0即可,0对应GL_TEXTURE0
        lightingShader.setInt("material.specular", 1);//绑定纹理?用1即可,1对应GL_TEXTURE1
        lightingShader.setInt("material.emission", 2);
//        lightingShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f);
        lightingShader.setFloat("material.shininess", 64.0f);


        glm::mat4 model = glm::mat4();
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), 1.0f, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        lightingShader.setMat4("view", view);
        lightingShader.setMat4("projection", projection);

        glBindVertexArray(cubeVAO);
        for (unsigned int i = 0; i < 10; i++) {
            model = glm::translate(model, cubePositions[i]);
            float angle = 20.0f * i;
            model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
            lightingShader.setMat4("model", model);

            glDrawArrays(GL_TRIANGLES, 0, 36);
        }

        lampShader.use();
        lampShader.setMat4("view", view);
        lampShader.setMat4("projection", projection);
        model = glm::mat4();
        model = glm::translate(model, lightPos);
        model = glm::scale(model, glm::vec3(0.2f));
        lampShader.setMat4("model", model);

        glBindVertexArray(lightVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);


        //双缓冲机制,前缓冲保存着最终输出的图像,后缓冲则进行绘制,绘制完成以后与前缓冲交换,就会立即显示
        //单缓冲会存在闪烁问题
        glfwSwapBuffers(window);//交换颜色缓冲
        glfwPollEvents();//检查有没有什么触发事件,鼠标键盘等,并调用相关的回调

    }

    //回收数据
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &lightVAO);
    glDeleteBuffers(1, &VBO);

    glfwTerminate();//结束绘制
    return 0;
}

//窗口尺寸改变的回调
void framebuffer_size_callback(GLFWwindow *window, int width, int height) {
    glViewport(0, 0, width, height);
}

void processInput(GLFWwindow *window) {
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

//*代表引用传递,传参数时要用&符号,而取*里的值则需要*p
void loadTexture(unsigned int *texture, const char *path) {
    glGenTextures(1, texture);
//    对*p赋值,从而改变p所指的地址上说保存的值
    //*textrue就能表示这个内存地址上表示的值
    glBindTexture(GL_TEXTURE_2D, *texture);//GL_TEXTURE_2D同样,它也是一个目标
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);//设置环绕和过滤方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    //加载纹理,第三个参数是颜色通道的个数
    int width, height, nrChannels;
    stbi_set_flip_vertically_on_load(true);
    //图片
    unsigned char *data = stbi_load(path, &width,
                                    &height, &nrChannels, 0);

    //第二个参数为多级渐远纹理的级别,0为基本级别,第三个参数为指定纹理存储为何种格式
    //第六个总是设置为0,第七第八定义源图的格式和数据类型
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
    glGenerateMipmap(GL_TEXTURE_2D);
    //释放图像内存
    stbi_image_free(data);
}


unsigned int loadTextureReal(char const *path) {
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data) {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    } else {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

bool firstMouse = true;

void mouse_callback(GLFWwindow *window, double xpos, double ypos) {
    if (firstMouse) {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

//滚轮的回调
void scroll_callback(GLFWwindow *window, double xoffset, double yoffset) {
    camera.ProcessMouseScroll(yoffset);
}
#version 330 core
out vec4 FragColor;

//uniform vec3 lightPos;
uniform vec3 viewPos;

in vec3 Normal;
in vec3 FragPos;

struct Material {
    //环境光颜色几乎在所有情况下都等于漫反射颜色,所以不需要环境光,只用漫反射即可
//    vec3 ambient;//环境光,一般是物体颜色
//    vec3 diffuse;//漫反射光照下物体的颜色
    sampler2D diffuse;
//    vec3 specular;//镜面光照对物体的颜色影响
    sampler2D specular;
    sampler2D emission;//放射光的贴图
    float shininess;//反光度
};

//一个光源对它的ambient、diffuse和specular光照有着不同的强度
struct Light {
    vec3 position;//光源位置,一般只有点光源用
    vec3 direction;//定向光
    float cutoff;//聚光灯的切光角,处于角度之外的东西都不会被照亮
    float outerCutOff;//外光切

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;

    float constant;
    float linear;
    float quadratic;
};

//之前都是用灯光来设定环境光,漫反射光和镜面反射光,现在我们要分开设置这些材质
uniform Material material;

uniform Light light;

//上面用两个纹理,下面用一个接收?并不是,这个是纹理的坐标
//而纹理的对象,是设置给了Light结构体里的diffuse和specular
in vec2 TexCoords;

void main() {
        //距离光源的距离
//        float distance = length(light.position - FragPos);
        //光的衰减公式,attenuation就是最后剩下的程度
//        float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * distance * distance);

            vec3 lightDir = normalize(light.position - FragPos);

           //环境光,现在设置为与漫反射同样的值
           vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));

           //漫反射,先对向量进行标准化
           vec3 norm = normalize(Normal);
           //依据法向量计算光源对当前片段的漫反射影响
           float diff = max(dot(norm, lightDir),0.0);//点积,算出来的是投影长度,夹角越小,越接近1,越亮
           vec3 diffuse = light.diffuse * (diff * vec3(texture(material.diffuse, TexCoords)));//混合纹理

           //镜面反射
           vec3 viewDir = normalize(viewPos - FragPos);//片段位置到摄像机位置的向量,也就是视线方向
           //反射向量,reflect函数要求第一个向量是从光源指向片段位置的向量
           vec3 reflectDir = reflect(-lightDir,norm);
           //点乘,避免负值,取32次幂,32是高光的反光度,这个点乘肯定小于1,32次方,那就更小了
           //一个物体的反光度越高,反射光的能力越强,散射得越少,高光点就会越小,可以理解
           //反光度material.shininess,必须是float类型,否则报错
           //镜面光贴图我们可以可以对物体设置大量的细节,比如物体的哪些部分需要有闪闪发光的属性,我们甚至可以设置它们对应的强度。
           //镜面光贴图能够在漫反射贴图之上给予我们更高一层的控制
           float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
           vec3 specular = light.specular * (spec * vec3(texture(material.specular,TexCoords)));

           //放射光贴图,这个.rgb跟前面的vec3()转是一个效果,都是把vec4转成vec3
//           vec3 emission = texture(material.emission, TexCoords).rgb;

           //将环境光,漫反射光,镜面反射光作用于物体
    //       vec3 result = ambient + diffuse + specular + emission;
            //使用衰减
    //        ambient *= attenuation;
    //        diffuse *= attenuation;
    //        specular *= attenuation;

        //设置一个聚光的衰减效果,需要设置内光切和外光切,在内外光切之间,光线往外逐渐衰减
        float theta = dot(lightDir,normalize(-light.direction));
        float epsilon = light.cutoff - light.outerCutOff;//内外光切cos值的差
        //(theta - light.outerCutOff) / epsilon 就是光在内光切和外光切之间的衰减公式
        float intensity = clamp((theta - light.outerCutOff) / epsilon,0.0,1.0);//clamp约束第一个参数值在0到1之间
       //用衰减值来处理漫反射和镜面光
        diffuse *= intensity;
        specular *= intensity;
        //当我用使用聚光的内光切和外光切对光线进行衰减时,就不用if else来区分了,超过外光切的公式已经把它弄成0了
        vec3 result = ambient + diffuse + specular ;
//        if(theta > light.cutoff){//如果在聚光灯内,使用正常的光照
                //result = ambient + diffuse + specular ;
//        }else{
//              //否则只显示环境光
//             result =light.ambient * texture(material.diffuse, TexCoords).rgb;
//        }
         //混合光照颜色
        FragColor = vec4(result, 1.0);

}
#version 330 core

layout (location = 0) in vec3 aPos;//位置变量的属性位置值为0
layout (location = 1) in vec3 aNormal;//法向量
layout (location = 2) in vec2 aTexCoords;//纹理

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;



out vec3 Normal;
out vec3 FragPos;
out vec2 TexCoords;

void main() {
    gl_Position = projection*view*model*vec4(aPos,1.0);
    FragPos = vec3(model * vec4(aPos,1.0));
    //把法向量也转换为世界空间坐标,所以需要一个法线矩阵
    //由于我们只在世界空间中进行操作(不是在观察空间),我们只使用模型矩阵
    //使用inverse和transpose函数修改model生成这个法线矩阵,必须是3x3的
    mat3 normalMatrix =  mat3(transpose(inverse(model)));
    Normal = normalMatrix * aNormal;
    TexCoords = aTexCoords;
}

你可能感兴趣的:(C++ opengl 绘制立方体,使用点光源,平行光,聚光等)