LeetCode 55.跳跃游戏

https://leetcode-cn.com/problems/jump-game/
给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

思路:

  1. 动态规划
    设dp[i]为在 i 处能够到达的最远距离,这个距离与dp[i - 1]有关,是dp[i - 1]与 i+nums[i]中较大的那个。
    在循环过程中必须保证 i 比dp[i - 1]小,即上一步可以到达i,否则没有意义。
    最后如果dp的最后一位可以到达数组的最后一位,则返回true。
var canJump = function(nums) {
    let n = nums.length;
    if (n === 1) return true;
    let dp = new Array(n).fill(0);
    dp[0] = nums[0];
    for (let i = 1; i < n; i++) {
        if (i <= dp[i - 1]) {
            dp[i] = Math.max(dp[i - 1], nums[i] + i)
        }
    }
    return dp[n - 1] >= n - 1;
};

状态压缩

var canJump = function(nums) {
    let n = nums.length;
    if (n === 1) return true;

    let spot = nums[0];
    for (let i = 1; i < n; i++) {
        if (i <= spot) {
            spot = Math.max(spot, nums[i] + i)
        }
    }
    return spot >= n - 1;
};
  1. 贪心算法
    不去关注每一步能跳跃到的位置,而是找每一步能够跳跃到的最远位置,不断覆盖这个最远值。如果最后这个最远值可以到达数组最后一位,那么就可以返回true。
var canJump = function(nums) {
    if (nums.length === 1) return true;
    let spot = nums[0];
    for (let i = 0; i <= spot; i++) {
        spot = Math.max(spot, i + nums[i]);
        if(spot >= nums.length - 1) {
            return true;
        }
    }
    return false;
};

你可能感兴趣的:(leetCode刷题,leetcode,动态规划,算法)